skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Enacting boundaries or building bridges? Language and engagement in food-energy-water systems science
Abstract Scientific study of issues at the nexus of food–energy–water systems (FEWS) requires grappling with multifaceted, “wicked” problems. FEWS involve interactions occurring directly and indirectly across complex and overlapping spatial and temporal scales; they are also imbued with diverse and sometimes conflicting meanings for the human and more-than-human beings that live within them. In this paper, we consider the role of language in the dynamics of boundary work, recognizing that the language often used in stakeholder and community engagement intended to address FEWS science and decision-making constructs boundaries and limits diverse and inclusive participation. In contrast, some language systems provide opportunities to build bridges rather than boundaries in engagement. Based on our experiences with engagement in FEWS science and with Indigenous knowledges and languages, we consider examples of the role of language in reflecting worldviews, values, practices, and interactions in FEWS science and engagement. We particularly focus on Indigenous knowledges from Anishinaabe and the language of Anishinaabemowin, contrasting languages of boundaries and bridges through concrete examples. These examples are used to unpack the argument of this work, which is that scientific research aiming to engage FEWS issues in working landscapes requires grappling with embedded, practical understandings. This perspective demonstrates the importance of grappling with the role of language in creating boundaries or bridges, while recognizing that training in engagement may not critically reflect on the role of language in limiting diversity and inclusivity in engagement efforts. Leaving this reflexive consideration of language unexamined may unknowingly perpetuate boundaries rather than building bridges, thus limiting the effectiveness of engagement that is intended to address wicked problems in working landscapes.  more » « less
Award ID(s):
1856059 1639342 1934346 1934348 2009258
NSF-PAR ID:
10332528
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Socio-Ecological Practice Research
Volume:
4
Issue:
2
ISSN:
2524-5279
Page Range / eLocation ID:
131 to 148
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Involving the public in scientific discovery offers opportunities for engagement, learning, participation, and action. Since its launch in 2007, the CitSci.org platform has supported hundreds of community-driven citizen science projects involving thousands of participants who have generated close to a million scientific measurements around the world. Members using CitSci.org follow their curiosities and concerns to develop, lead, or simply participate in research projects. While professional scientists are trained to make ethical determinations related to the collection of, access to, and use of information, citizen scientists and practitioners may be less aware of such issues and more likely to become involved in ethical dilemmas. In this era of big and open data, where data sharing is encouraged and open science is promoted, privacy and openness considerations can often be overlooked. Platforms that support the collection, use, and sharing of data and personal information need to consider their responsibility to protect the rights to and ownership of data, the provision of protection options for data and members, and at the same time provide options for openness. This requires critically considering both intended and unintended consequences of the use of platforms, data, and volunteer information. Here, we use our journey developing CitSci.org to argue that incorporating customization into platforms through flexible design options for project managers shifts the decision-making from top-down to bottom-up and allows project design to be more responsive to goals. To protect both people and data, we developed—and continue to improve—options that support various levels of “open” and “closed” access permissions for data and membership participation. These options support diverse governance styles that are responsive to data uses, traditional and indigenous knowledge sensitivities, intellectual property rights, personally identifiable information concerns, volunteer preferences, and sensitive data protections. We present a typology for citizen science openness choices, their ethical considerations, and strategies that we are actively putting into practice to expand privacy options and governance models based on the unique needs of individual projects using our platform. 
    more » « less
  2. Wicked problems are inherent in food–energy–water systems (FEWS) due to the complexity and interconnectedness of these systems, and addressing these challenges necessitates the involvement of the diverse stakeholders in FEWS. However, successful stakeholder engagement requires a strong understanding of the relationships between stakeholders and the specific wicked problem. To better account for these relationships, we adapted a means, motive, and opportunity (MMO) framework to develop a method of stakeholder analysis that evaluates the agency of stakeholders related to a wicked problem in FEWS. This method involves two key components: (1) identification of a challenge at the FEWS nexus and (2) evaluation of stakeholder agency related to the challenge using the dimensions of MMO. This approach provides a method for understanding the characteristics of stakeholders in FEWS and provides information that could be used to inform stakeholder engagement in efforts to address wicked problems at the FEWS nexus. In this article, we present the stakeholder analysis method and describe an example application of the MMO method by examining stakeholder agency related to the adoption of improved swine waste management technology in North Carolina, USA. 
    more » « less
  3. Three Northern Arapaho and Eastern Shoshone–serving districts formed a researcher–practitioner partnership with the Wyoming Department of Education, the American Institutes for Research®, and BootUp Professional Development to advance the computer science (CS) education of their elementary students in ways that strengthen their Indigenous identities and knowledges. In this paper, we share experiences from 2019 to 2022 with our curriculum development, professional development (PD), and classroom implementation. The researcher–practitioner partnership developed student and teacher materials to support elementary CS lessons aligned to Wyoming’s CS standards and “Indian Education for All” social studies standards. Indigenous community members served as experts to codesign culturally relevant resources. Teachers explored the curriculum resources during three 4-hour virtual and in-person PD sessions. The sessions were designed to position the teachers as designers of CS projects they eventually implemented in their classrooms. Projects completed by students included simulated interviews with Indigenous heroes and animations of students introducing themselves in their Native languages. Teachers described several positive effects of the Scratch lessons on students, including high engagement, increased confidence, and successful application of several CS concepts. The teachers also provided enthusiastic positive reviews of the ways the CS lessons allowed students to explore their Indigenous identities while preparing to productively use technology in their futures. The Wind River Elementary CS Collaborative is one model for how a researcher–practitioner partnership can utilize diverse forms of expertise, ways of knowing, and Indigenous language to engage in curriculum design, PD, and classroom implementation that supports culturally sustaining CS pedagogies in Indigenous communities. 
    more » « less
  4. null (Ed.)
    Scholars bridging the fields of science and technology studies (STS) and energy research in social sciences (ERSS) offer a rich and integrated conceptualization of how energy systems are imbued in social systems, including cultures, social structures, institutions, and social relations of power. Yet as fields of study, STS and ERSS are dominated by approaches to understanding nature, culture, and relationships among them with origins in western European Enlightenment thinking. In this article, we argue that the language of “imaginaries” provides an understanding of culturally organized normative commitments but may obscure attention to what are actually diverse and sometimes incommensurable yet legitimate plural ontologies. Tribal Nations, Indigenous communities, and other non-Western worldviews are not simply imagined; they offer different teachings regarding the relational and embedded realities governing relations among human and more-than-human beings across time and space. The field of STS has a rich history of exploring ontological controversies and provides insight into understanding diverse and competing perspectives in science and technology, yet without articulating the connection between this conceptual terrain and the lived realities of socio-technological system entrenchment or change. ERSS recognizes participation, energy system democratization, and even co-production as components of a just energy transition, while most typically thinking about participation as a methodology or research approach rather than as requiring consideration and even wholesale reconceptualization of ontological foundations. To advance convergent, transdisciplinary social science research in socio technological transitions requires grappling with plural ontologies regarding the reality of relations in the world. Here, we explore diverse ontologies shaping the realities of energy systems through the lens of Tribal Nations in the Great Lakes region in the United States. Ontologies that recognize reciprocal relationships among human and more-than-human beings as well as the sovereignty of these beings and their collective kinships suggest fundamentally different priorities for energy systems transitions. Moving beyond the language of imagination to recognize that cultures can involve diverse and sometimes incommensurable pluralistic ontologies is essential for developing inclusive and just frameworks for socio-technological system transitions. 
    more » « less
  5. Environmental impacts associated with inefficient and ineffective land-based wastewater treatment have direct implications for regional governments and local communities in the Caribbean due to the links between environmental quality of coastal areas (e.g. coral reefs) and socioeconomic activities (e.g. tourism, commercial fishing, cultural heritage, recreation). In Placencia, Belize an interdisciplinary team of students and community members investigate the tradeoffs that exists amid a food-energy-water systems (FEWS) case study, in order to co-create sustainable solutions. This work partners with Fragments of Hope and EcoFriendly Solutions to take a systems approach to consider the dynamic and interrelated factors and leverage points (e.g. technological, regulatory, organizational, social, economic) related to the adoption and sustainability of wastewater innovations at cayes where coral restoration work is occurring. This technology can improve water quality issues in sensitive marine ecosystems and productively reuse water and nutrients to grow food. Results show that marketing and technical strategies contributed to incremental improvements in the system's sustainability, while changing community behaviors (i.e. reporting the correct number of users and reclaiming resources – water and nutrients – for food production), was the more significant way to influence the sustainable management of the wastewater resources and to protect the coastal environment. The work is situated within the deeper context of graduate student research and training where the University of South Florida is partnering with the Caribbean Community Climate Change Center to raise up a new generation of globally competent science, technology, engineering, and math (STEM) students. These students develop interdisciplinary and 21st century skills, as well as technical and methodological flexibility to address the complexity inherent in “wicked problems”. To accomplish this, the partners provide resources and training for interdisciplinary and systems-based teaching and research that results in original and impactful solutions developed alongside community members to locally and globally focused challenges. 
    more » « less