It has been postulated that the brain is organized by “metamodal,” sensory-independent cortical modules capable of performing tasks (e.g., word recognition) in both “standard” and novel sensory modalities. Still, this theory has primarily been tested in sensory-deprived individuals, with mixed evidence in neurotypical subjects, thereby limiting its support as a general principle of brain organization. Critically, current theories of metamodal processing do not specify requirements for successful metamodal processing at the level of neural representations. Specification at this level may be particularly important in neurotypical individuals, where novel sensory modalities must interface with existing representations for the standard sense. Here we hypothesized that effective metamodal engagement of a cortical area requires congruence between stimulus representations in the standard and novel sensory modalities in that region. To test this, we first used fMRI to identify bilateral auditory speech representations. We then trained 20 human participants (12 female) to recognize vibrotactile versions of auditory words using one of two auditory-to-vibrotactile algorithms. The vocoded algorithm attempted to match the encoding scheme of auditory speech while the token-based algorithm did not. Crucially, using fMRI, we found that only in the vocoded group did trained-vibrotactile stimuli recruit speech representations in the superior temporal gyrus and lead to increased coupling between them and somatosensory areas. Our results advance our understanding of brain organization by providing new insight into unlocking the metamodal potential of the brain, thereby benefitting the design of novel sensory substitution devices that aim to tap into existing processing streams in the brain. SIGNIFICANCE STATEMENTIt has been proposed that the brain is organized by “metamodal,” sensory-independent modules specialized for performing certain tasks. This idea has inspired therapeutic applications, such as sensory substitution devices, for example, enabling blind individuals “to see” by transforming visual input into soundscapes. Yet, other studies have failed to demonstrate metamodal engagement. Here, we tested the hypothesis that metamodal engagement in neurotypical individuals requires matching the encoding schemes between stimuli from the novel and standard sensory modalities. We trained two groups of subjects to recognize words generated by one of two auditory-to-vibrotactile transformations. Critically, only vibrotactile stimuli that were matched to the neural encoding of auditory speech engaged auditory speech areas after training. This suggests that matching encoding schemes is critical to unlocking the brain's metamodal potential.
more »
« less
Explaining Engagement: Learner Behaviors in a Virtual Coding Camp.
Engagement is critical to learning, yet current research rarely explores its underlying contextual influences, such as differences across modalities and tasks. Accordingly we examine how patterns of behavioral engagement manifest in a diverse group of ten middle school girls participating in a synchronous virtual computer science camp. We form multimodal measures of behavioral engagement from learner chats and speech. We found that the function of modalities varies, and chats are useful for short responses, whereas speech is better for elaboration. We discuss implications of our work for the design of intelligent systems that support online educational experiences.
more »
« less
- Award ID(s):
- 1935801
- PAR ID:
- 10294114
- Date Published:
- Journal Name:
- International Conference on Artificial Intelligence in Education
- Page Range / eLocation ID:
- 338-343
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Speech processing often occurs amid competing inputs from other modalities, for example, listening to the radio while driving. We examined the extent to which dividing attention between auditory and visual modalities (bimodal divided attention) impacts neural processing of natural continuous speech from acoustic to linguistic levels of representation. We recorded electroencephalographic (EEG) responses when human participants performed a challenging primary visual task, imposing low or high cognitive load while listening to audiobook stories as a secondary task. The two dual-task conditions were contrasted with an auditory single-task condition in which participants attended to stories while ignoring visual stimuli. Behaviorally, the high load dual-task condition was associated with lower speech comprehension accuracy relative to the other two conditions. We fitted multivariate temporal response function encoding models to predict EEG responses from acoustic and linguistic speech features at different representation levels, including auditory spectrograms and information-theoretic models of sublexical-, word-form-, and sentence-level representations. Neural tracking of most acoustic and linguistic features remained unchanged with increasing dual-task load, despite unambiguous behavioral and neural evidence of the high load dual-task condition being more demanding. Compared to the auditory single-task condition, dual-task conditions selectively reduced neural tracking of only some acoustic and linguistic features, mainly at latencies >200 ms, while earlier latencies were surprisingly unaffected. These findings indicate that behavioral effects of bimodal divided attention on continuous speech processing occur not because of impaired early sensory representations but likely at later cognitive processing stages. Crossmodal attention-related mechanisms may not be uniform across different speech processing levels.more » « less
-
Neural speech tracking has advanced our understanding of how our brains rapidly map an acoustic speech signal onto linguistic representations and ultimately meaning. It remains unclear, however, how speech intelligibility is related to the corresponding neural responses. Many studies addressing this question vary the level of intelligibility by manipulating the acoustic waveform, but this makes it difficult to cleanly disentangle the effects of intelligibility from underlying acoustical confounds. Here, using magnetoencephalography recordings, we study neural measures of speech intelligibility by manipulating intelligibility while keeping the acoustics strictly unchanged. Acoustically identical degraded speech stimuli (three-band noise-vocoded, ~20 s duration) are presented twice, but the second presentation is preceded by the original (nondegraded) version of the speech. This intermediate priming, which generates a “pop-out” percept, substantially improves the intelligibility of the second degraded speech passage. We investigate how intelligibility and acoustical structure affect acoustic and linguistic neural representations using multivariate temporal response functions (mTRFs). As expected, behavioral results confirm that perceived speech clarity is improved by priming. mTRFs analysis reveals that auditory (speech envelope and envelope onset) neural representations are not affected by priming but only by the acoustics of the stimuli (bottom–up driven). Critically, our findings suggest that segmentation of sounds into words emerges with better speech intelligibility, and most strongly at the later (~400 ms latency) word processing stage, in prefrontal cortex, in line with engagement of top–down mechanisms associated with priming. Taken together, our results show that word representations may provide some objective measures of speech comprehension.more » « less
-
Preference tuning is a crucial process for aligning deep generative models with human preferences. This survey offers a thorough overview of recent advancements in preference tuning and the integration of human feedback. The paper is organized into three main sections: 1) introduction and preliminaries: an introduction to reinforcement learning frameworks, preference tuning tasks, models, and datasets across various modalities: language, speech, and vision, as well as different policy approaches, 2) in-depth exploration of each preference tuning approach: a detailed analysis of the methods used in preference tuning, and 3) applications, discussion, and future directions: an exploration of the applications of preference tuning in downstream tasks, including evaluation methods for different modalities, and an outlook on future research directions. Our objective is to present the latest methodologies in preference tuning and model alignment, enhancing the understanding of this field for researchers and practitioners. We hope to encourage further engagement and innovation in this area. Additionally, we provide a GitHub link https://github.com/hanyang1999/Preference-Tuning-with-Human-Feedback.more » « less
-
Advances in gene editing technologies for human, plant, and animal applications have led to calls from bench and social scientists, as well as a wide variety of societal stakeholders, for broad public engagement in the decision-making about these new technologies. Unfortunately, there is limited understanding among the groups calling for public engagement on CRISPR and other emerging technologies about 1) the goals of this engagement, 2) the modes of engagement and what we know from systematic social scientific evaluations about their effectiveness, and 3) how to connect the products of these engagement exercises to societal decision or policy making. Addressing all three areas, we systematize common goals, principles, and modalities of public engagement. We evaluate empirically the likely successes of various modalities. Finally, we outline three pathways forward that deserve close attention from the scientific community as we navigate the world of Life 2.0.more » « less
An official website of the United States government

