- Award ID(s):
- 1734044
- NSF-PAR ID:
- 10294160
- Date Published:
- Journal Name:
- International Journal of STEM Education
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2196-7822
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
First-generation college students in engineering accumulate bodies of knowledge through their working-class families. In our ethnographic data of first-generation college students, we identified tinkering knowledge from home and from work, perspective taking, mediational ability, and connecting experiences as knowledge sources brought to engineering. The purpose of this paper was to understand how first-generation college students’ accumulated bodies of knowledge (i.e., funds of knowledge) support their beliefs about performing well in engineering coursework, feeling a sense of belonging in the classroom, and certainty of graduating. Data for this study came from a survey administered in the Fall of 2018 from ten universities across the US. In this study, only the sample of students who indicated their parents had less than a bachelor’s degree (n = 378) were used. A structural equation modeling technique was employed to examine several interconnected research questions pertaining to funds of knowledge, performance/competence beliefs, classroom belongingness, and certainty of graduating with an engineering degree. Our analysis demonstrates that the accumulated bodies of knowledge obtained through tinkering at home, tinkering at work, and the skill of being a mediator served to scaffold concepts that students were currently learning in engineering. There was a negative direct relationship between students’ ability to make connections between their home activities to scaffold what they are currently learning and their certainty of graduating with an engineering degree. However, first-generation college students’ perceptions of performing well in their engineering coursework and their sense of belonging in the classroom positively supported their certainty of graduating thus emphasizing the importance of connecting students’ funds of knowledge to engineering coursework and classroom instruction. Implications for possible approaches towards connecting first-generation college students’ funds of knowledge to engineering coursework and classroom culture are discussed.more » « less
-
Contribution: This study shows that identification with engineering for engineering graduate students is positively and significantly predicted by engineering interest, competence, recognition, and interpersonal skills competence. Background: Prior studies of engineering identity on undergraduates identified several factors (e.g., engineering interest, engineering recognition) as positive predictors of identification of engineering. Engineering competence, achieved by participating in design projects, is a crucial part of students’ efforts to become more innovative engineers. Identity theory is used to understand undergraduates’ persistence in engineering, as students with stronger engineering identification are more likely to persist. More work is needed focusing on graduate students. Research Questions: Do engineering identity measurement frameworks studied for undergraduate students also apply to graduate students? Do they correlate with intention to complete the degree? What predicts the engineering identity of engineering Master's and doctoral students? Methodology: Interviews informed development and adaptation of a multi-scale survey instrument. Factor analyses identified four factors that relate to graduate engineering identity: engineering interest, engineering recognition, engineering competence, and interpersonal skills competence. Three sequential multiple linear regression models were used to predict engineering graduate students’ engineering identity. Findings: The final regression model, which includes student characteristics and the four factors resulting from Confirmatory Factor Analysis, predicts 60% of the variance in engineering identity—substantially more than similar undergraduate engineering identity models. All four factors were significant and positive predictors of graduate students’ engineering identity. The engineering recognition factor in particular needed adaptation to emphasize peers and faculty members over family, although family remained important.more » « less
-
null (Ed.)Establishing and sustaining a sense of belonging is a necessary human motivation with particular implications for student learning, including in engineering. Students who experience a sense of belonging are more likely to display intrinsic motivation and establish a stronger sense of identity and persistence. It is important, however, to distinguish different domains of belonging, such as belonging to one’s university, belonging to a major, and belonging in the classroom setting. Our study examines if and how faculty support efforts contribute to diverse students’ sense of belonging in the classroom setting. Specifically, we sought to answer the following research questions: Which faculty support efforts promote a sense of classroom belongingness? Do faculty support efforts differentially promote a sense of classroom belongingness for students based on their demographic characteristics? Data for this study was collected in the Fall of 2018, across ten institutions, n = 819. We used the Faculty Support items from the STEM Student Perspectives of Support Instrument developed from Lee’s model of co-curricular support to answer our research questions. Demographic categories were created to understand if and how faculty support efforts differentially promote a sense of belonging for minoritized students compared to their counterparts. Multiple regression analysis was conducted to examine the faculty support efforts that fostered a sense of belonging in the classroom. Interaction effects were included to understand how faculty support efforts affected classroom belongingness for the students in the demographic groups we identified. Minoritized women were less likely to feel a sense of belonging in the classroom when compared to majoritized men. Neither groups of women believed that their instructors wanted them to succeed, thus negatively impacting their classroom belongingness. There were, however, faculty support efforts that positively contributed to a sense of belonging in the classroom for minoritized women, including instructors’ availability, knowing that they could ask instructors for help in course-related material, and when instructors fostered an atmosphere of mutual respect. Additionally, minoritized women felt a sense of classroom belonging when they could capitalize on their previous experiences to scaffold their learning. Our findings highlight classroom practices and strategies faculty can use in the classroom to support minoritized women’s sense of belonging. These practices and strategies will be a crucial resource for engineering educators and administrators who seek to improve the field’s retention of minoritized and women students. Whereas efforts have been made to recruit minoritized students into engineering, our study points to a clear and crucial role for faculty to play: they can support minoritized students by fostering a sense of belonging in engineering classrooms.more » « less
-
Abstract Background Identifying as an engineer is essential for belonging and student success, yet the social context and professional norms make it more difficult for some students to establish an identity as an engineer.
Purpose/Hypothesis This study investigated whether first‐generation college students' funds of knowledge supported their engineering role identity.
Design/Methods Data came from a survey administered across the United States western, southern, and mountain regions in the fall semester of 2018. Only the sample of students who indicated they were the first in their families to attend college was used in the analysis (
n = 378). Structural equation modeling was used to understand how first‐generation college students' funds of knowledge supported their engineering role identity; measurement invariance was examined to ensure that the model was valid for women and men alike.Results First‐generation college students' funds of knowledge individually supported the components of the engineering role identity development process. Tinkering knowledge from home and perspective‐taking helped inform interest and performance/competence beliefs. First‐generation college students' bids for external recognition were supported through their mediational skills, their connecting experiences, and their local network of college friends. The bundle of advice, resources, and emotional support from family members was the only fund of knowledge that directly supported students' perceptions of themselves as engineers.
Conclusions The relationships we established between first‐generation college students' funds of knowledge and emerging engineering role identities call for engineering educators to integrate students' funds of knowledge into engineering learning and to broaden disciplinary norms of what counts as engineering‐relevant knowledge.
-
Measures of subject-related role identities in physics and math have been developed from research on the underlying constructs of identity in science education. The items for these measures capture three constructs of identity: students’ interest in the subject, students’ feeling of recognition by others, and students’ beliefs about their performance/competence in the subject area. In prior studies with late secondary and early post-secondary students, participants did not distinguish between performance beliefs (e.g., believing that they can do well in a particular subject) and competence beliefs (e.g., believing that they can understand a particular subject); therefore, performance/competence beliefs are measured as a single construct. These validated measures have been successful in predicting STEM career choices including physics, math, and engineering. Based on these measures of identity, literature on engineering identity, and my prior work on understanding engineering choice and belongingness through students’ science and math identities at the transition from high school to college, I developed a set of new engineering identity measures that capture and overall identification as an engineer, future engineering career identification, and students’ engineering-related interest, recognition, and performance/competence beliefs. I conducted a pilot survey of 371 first-year engineering students at three institutions within the U.S. during the spring semester of 2015. An exploratory factor analysis (EFA) was performed to examine the underlying structure of the piloted questions about students’ engineering identity. The measures loaded on three separate constructs that were consistent with the hypothesized constructs of interest, performance/competence and recognition. The developed items were used in a subsequent study deployed in the fall semester of 2015 that measured more than 2500 first-year engineering students’ attitudes and beliefs at four institutions within the U.S. The data on engineering identity measures from this second survey were analyzed using confirmatory factor analysis (CFA). The results indicated that the developed measures do extract a significant portion of the average variance in the latent constructs and the internal consistency of the measures (Cronbach’s α) falls within the acceptable and better range. The development of these items provides ways for engineering education researchers to more deeply explore the underlying self-beliefs in students’ engineering identity formation through quantitative measures with strong evidence for validity.more » « less