skip to main content


Title: A Test of Species Distribution Model Transferability Across Environmental and Geographic Space for 108 Western North American Tree Species
Predictions from species distribution models (SDMs) are commonly used in support of environmental decision-making to explore potential impacts of climate change on biodiversity. However, because future climates are likely to differ from current climates, there has been ongoing interest in understanding the ability of SDMs to predict species responses under novel conditions (i.e., model transferability). Here, we explore the spatial and environmental limits to extrapolation in SDMs using forest inventory data from 11 model algorithms for 108 tree species across the western United States. Algorithms performed well in predicting occurrence for plots that occurred in the same geographic region in which they were fitted. However, a substantial portion of models performed worse than random when predicting for geographic regions in which algorithms were not fitted. Our results suggest that for transfers in geographic space, no specific algorithm was better than another as there were no significant differences in predictive performance across algorithms. There were significant differences in predictive performance for algorithms transferred in environmental space with GAM performing best. However, the predictive performance of GAM declined steeply with increasing extrapolation in environmental space relative to other algorithms. The results of this study suggest that SDMs may be limited in their ability to predict species ranges beyond the environmental data used for model fitting. When predicting climate-driven range shifts, extrapolation may also not reflect important biotic and abiotic drivers of species ranges, and thus further misrepresent the realized shift in range. Future studies investigating transferability of process based SDMs or relationships between geodiversity and biodiversity may hold promise.  more » « less
Award ID(s):
1934790
NSF-PAR ID:
10294230
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
9
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Species distribution and ecological niche models (hereafter SDMs) are popular tools with broad applications in ecology, biodiversity conservation, and environmental science. Many SDM applications require projecting models in environmental conditions non‐analog to those used for model training (extrapolation), giving predictions that may be statistically unsupported and biologically meaningless. We introduce a novel method, Shape, a model‐agnostic approach that calculates the extrapolation degree for a given projection data point by its multivariate distance to the nearest training data point. Such distances are relativized by a factor that reflects the dispersion of the training data in environmental space. Distinct from other approaches, Shape incorporates an adjustable threshold to control the binary discrimination between acceptable and unacceptable extrapolation degrees. We compared Shape's performance to five extrapolation metrics based on their ability to detect analog environmental conditions in environmental space and improve SDMs suitability predictions. To do so, we used 760 virtual species to define different modeling conditions determined by species niche tolerance, distribution equilibrium condition, sample size, and algorithm. All algorithms had trouble predicting species niches. However, we found a substantial improvement in model predictions when model projections were truncated independently of extrapolation metrics. Shape's performance was dependent on extrapolation threshold used to truncate models. Because of this versatility, our approach showed similar or better performance than the previous approaches and could better deal with all modeling conditions and algorithms. Our extrapolation metric is simple to interpret, captures the complex shapes of the data in environmental space, and can use any extrapolation threshold to define whether model predictions are retained based on the extrapolation degrees. These properties make this approach more broadly applicable than existing methods for creating and applying SDMs. We hope this method and accompanying tools support modelers to explore, detect, and reduce extrapolation errors to achieve more reliable models.

    Keywords: environmental novelty, extrapolation, Mahalanobis distance, model prediction, non‐analog environmental data, transferability

     
    more » « less
  2. Species distribution models (SDMs), which relate recorded observations (presences) and absences or background points to environmental characteristics, are powerful tools used to generate hypotheses about the biogeography, ecology, and conservation of species. Although many researchers have examined the effects of presence and background point distributions on model outputs, they have not systematically evaluated the effects of various methods of background point sampling on the performance of a single model algorithm across many species. Therefore, a consensus on the preferred methods of background point sampling is lacking. Here, we conducted presence-background SDMs for 20 vertebrate species in North America under a variety of background point conditions, varying the number of background points used, the size of the buffer used to constrain the background points around the occurrences, and the percentage of background points sampled within the buffer (“spatial weighting”). We evaluated the accuracy and transferability of the models using Boyce index, overlap with expert-generated range maps, and area overpredicted and underpredicted by the SDM (and AUC for comparability with other studies). SDM performance is highly dependent on the species modelled but is affected by the number and spread of background points. Models with little spatial weighting had high accuracy (overlap values), but extreme extrapolation errors and overprediction. In contrast, SDMs with high transferability (high Boyce index values and low overprediction) had moderate-to-high spatial weighting. These results emphasize the importance of both background points and evaluation metric selection in SDMs. For other, more successful metrics, using many background points with spatial weighting may be preferred for models with large extents. These results can assist researchers in selecting the background point parameters most relevant for their research question, allowing them to fine-tune their hypotheses on the distribution of species through space and time. 
    more » « less
  3. Summary

    Anthropogenetic climate change has caused range shifts among many species. Species distribution models (SDMs) are used to predict how species ranges may change in the future. However, most SDMs rarely consider how climate‐sensitive traits, such as phenology, which affect individuals' demography and fitness, may influence species' ranges.

    Using > 120 000 herbarium specimens representing 360 plant species distributed across the eastern United States, we developed a novel ‘phenology‐informed’ SDM that integrates phenological responses to changing climates. We compared the ranges of each species forecast by the phenology‐informed SDM with those from conventional SDMs. We further validated the modeling approach using hindcasting.

    When examining the range changes of all species, our phenology‐informed SDMs forecast less species loss and turnover under climate change than conventional SDMs. These results suggest that dynamic phenological responses of species may help them adjust their ecological niches and persist in their habitats as the climate changes.

    Plant phenology can modulate species' responses to climate change, mitigating its negative effects on species persistence. Further application of our framework will contribute to a generalized understanding of how traits affect species distributions along environmental gradients and facilitate the use of trait‐based SDMs across spatial and taxonomic scales.

     
    more » « less
  4. Abstract

    Understanding the ranges of rare and endangered species is central to conserving biodiversity in the Anthropocene. Species distribution models (SDMs) have become a common and powerful tool for analyzing species–environment relationships across geographic space. Although evaluating the distribution of rare species is integral to their conservation, this can be difficult when limited distribution data are available. Community science platforms, such as iNaturalist, have emerged as alternative sources for species occurrence data. Although these observations are often thought to be of lower quality than those of natural history collections, they may have potential for improving SDMs for species with few occurrence records from collections. Here, we investigate the utility of iNaturalist data for developing SDMs for a rare high‐elevation plant,Telesonix jamesii. Because methods for modeling rare species are limited in the literature, five different modeling techniques were considered, including profile methods, statistical models, and machine learning algorithms. The inclusion of iNaturalist data doubled the number of usable records forT. jamesii.We found that a random forest (RF) model using ensemble training data performed the highest of any model (area under curve = 0.98). We then compared the performance of RF models that use only natural history training data and those that use a combination of natural history (herbarium specimens) and iNaturalist training data. All models heavily relied on climate data (mean temperature of driest quarter, and precipitation of the warmest quarter), indicating that this species is under threat as climate continues to change. Validation datasets affected model fits as well. Models using only herbarium data performed slightly poorer when evaluated with cross‐validation than when validated externally with iNaturalist data. This study can serve as a model for future SDM studies of species with similar data limitations.

     
    more » « less
  5. Abstract

    Spatial biases are an intrinsic feature of occurrence data used in species distribution models (SDMs). Thinning species occurrences, where records close in the geographic or environmental space are removed from the modeling procedure, is an approach often used to address these biases. However, thinning occurrence data can also negatively affect SDM performance, given that the benefits of removing spatial biases might be outweighed by the detrimental effects of data loss caused by this approach. We used real and virtual species to evaluate how spatial and environmental thinning affected different performance metrics of four SDM methods. The occurrence data of virtual species were sampled randomly, evenly spaced, and clustered in the geographic space to simulate different types of spatial biases, and several spatial and environmental thinning distances were used to thin the occurrence data. Null datasets were also generated for each thinning distance where we randomly removed the same number of occurrences by a thinning distance and compared the results of the thinned and null datasets. We found that spatially or environmentally thinned occurrence data is no better than randomly removing them, given that thinned datasets performed similarly to null datasets. Specifically, spatial and environmental thinning led to a general decrease in model performances across all SDM methods. These results were observed for real and virtual species, were positively associated with thinning distance, and were consistent across the different types of spatial biases. Our results suggest that thinning occurrence data usually fails to improve SDM performance and that the use of thinning approaches when modeling species distributions should be considered carefully.

     
    more » « less