Species distribution and ecological niche models (hereafter SDMs) are popular tools with broad applications in ecology, biodiversity conservation, and environmental science. Many SDM applications require projecting models in environmental conditions non‐analog to those used for model training (extrapolation), giving predictions that may be statistically unsupported and biologically meaningless. We introduce a novel method, Shape, a model‐agnostic approach that calculates the extrapolation degree for a given projection data point by its multivariate distance to the nearest training data point. Such distances are relativized by a factor that reflects the dispersion of the training data in environmental space. Distinct from other approaches, Shape incorporates an adjustable threshold to control the binary discrimination between acceptable and unacceptable extrapolation degrees. We compared Shape's performance to five extrapolation metrics based on their ability to detect analog environmental conditions in environmental space and improve SDMs suitability predictions. To do so, we used 760 virtual species to define different modeling conditions determined by species niche tolerance, distribution equilibrium condition, sample size, and algorithm. All algorithms had trouble predicting species niches. However, we found a substantial improvement in model predictions when model projections were truncated independently of extrapolation metrics. Shape's performance was dependent on extrapolation threshold used to truncate models. Because of this versatility, our approach showed similar or better performance than the previous approaches and could better deal with all modeling conditions and algorithms. Our extrapolation metric is simple to interpret, captures the complex shapes of the data in environmental space, and can use any extrapolation threshold to define whether model predictions are retained based on the extrapolation degrees. These properties make this approach more broadly applicable than existing methods for creating and applying SDMs. We hope this method and accompanying tools support modelers to explore, detect, and reduce extrapolation errors to achieve more reliable models. Keywords: environmental novelty, extrapolation, Mahalanobis distance, model prediction, non‐analog environmental data, transferability 
                        more » 
                        « less   
                    
                            
                            A Test of Species Distribution Model Transferability Across Environmental and Geographic Space for 108 Western North American Tree Species
                        
                    
    
            Predictions from species distribution models (SDMs) are commonly used in support of environmental decision-making to explore potential impacts of climate change on biodiversity. However, because future climates are likely to differ from current climates, there has been ongoing interest in understanding the ability of SDMs to predict species responses under novel conditions (i.e., model transferability). Here, we explore the spatial and environmental limits to extrapolation in SDMs using forest inventory data from 11 model algorithms for 108 tree species across the western United States. Algorithms performed well in predicting occurrence for plots that occurred in the same geographic region in which they were fitted. However, a substantial portion of models performed worse than random when predicting for geographic regions in which algorithms were not fitted. Our results suggest that for transfers in geographic space, no specific algorithm was better than another as there were no significant differences in predictive performance across algorithms. There were significant differences in predictive performance for algorithms transferred in environmental space with GAM performing best. However, the predictive performance of GAM declined steeply with increasing extrapolation in environmental space relative to other algorithms. The results of this study suggest that SDMs may be limited in their ability to predict species ranges beyond the environmental data used for model fitting. When predicting climate-driven range shifts, extrapolation may also not reflect important biotic and abiotic drivers of species ranges, and thus further misrepresent the realized shift in range. Future studies investigating transferability of process based SDMs or relationships between geodiversity and biodiversity may hold promise. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1934790
- PAR ID:
- 10294230
- Date Published:
- Journal Name:
- Frontiers in Ecology and Evolution
- Volume:
- 9
- ISSN:
- 2296-701X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract 1. Species distribution models (SDMs) are crucial tools for understanding and predicting biodiversity patterns, yet they often struggle with limited data, biased sampling, and complex species-environment relationships. Here I present NicheFlow, a novel foundation model for SDMs that leverages generative AI to address these challenges and advance our ability to model and predict species distributions across taxa and environments. 2. NicheFlow employs a two-stage generative approach, combining species embeddings with two chained generative models, one to generate a distribution in environmental space, and a second to generate a distribution in geographic space. This architecture allows for the sharing of information across species and captures complex, non-linear relationships in environmental space. I trained NicheFlow on a comprehensive dataset of reptile distributions and evaluated its performance using both standard SDM metrics and zero-shot prediction tasks. 3. NicheFlow demonstrates good predictive performance, particularly for rare and data-deficient species. The model successfully generated plausible distributions for species not seen during training, showcasing its potential for zero-shot prediction. The learned species embeddings captured meaningful ecological information, revealing patterns in niche structure across taxa, latitude and range sizes. 4. As a proof-of-principle foundation model, NicheFlow represents a significant advance in species distribution modeling, offering a powerful tool for addressing pressing questions in ecology, evolution, and conservation biology. Its ability to model joint species distributions and generate hypothetical niches opens new avenues for exploring ecological and evolutionary questions, including ancestral niche reconstruction and community assembly processes. This approach has the potential to transform our understanding of biodiversity patterns and improve our capacity to predict and manage species distributions in the face of global change.more » « less
- 
            Summary Anthropogenetic climate change has caused range shifts among many species. Species distribution models (SDMs) are used to predict how species ranges may change in the future. However, most SDMs rarely consider how climate‐sensitive traits, such as phenology, which affect individuals' demography and fitness, may influence species' ranges.Using > 120 000 herbarium specimens representing 360 plant species distributed across the eastern United States, we developed a novel ‘phenology‐informed’ SDM that integrates phenological responses to changing climates. We compared the ranges of each species forecast by the phenology‐informed SDM with those from conventional SDMs. We further validated the modeling approach using hindcasting.When examining the range changes of all species, our phenology‐informed SDMs forecast less species loss and turnover under climate change than conventional SDMs. These results suggest that dynamic phenological responses of species may help them adjust their ecological niches and persist in their habitats as the climate changes.Plant phenology can modulate species' responses to climate change, mitigating its negative effects on species persistence. Further application of our framework will contribute to a generalized understanding of how traits affect species distributions along environmental gradients and facilitate the use of trait‐based SDMs across spatial and taxonomic scales.more » « less
- 
            Abstract Species distribution models (SDMs) have become increasingly popular for making ecological inferences, as well as predictions to inform conservation and management. In predictive modeling, practitioners often use correlative SDMs that only evaluate a single spatial scale and do not account for differences in life stages. These modeling decisions may limit the performance of SDMs beyond the study region or sampling period. Given the increasing desire to develop transferable SDMs, a robust framework is necessary that can account for known challenges of model transferability. Here, we propose a comparative framework to develop transferable SDMs, which was tested using satellite telemetry data from green turtles (Chelonia mydas). This framework is characterized by a set of steps comparing among different models based on (1) model algorithm (e.g., generalized linear model vs. Gaussian process regression) and formulation (e.g., correlative model vs. hybrid model), (2) spatial scale, and (3) accounting for life stage. SDMs were fitted as resource selection functions and trained on data from the Gulf of Mexico with bathymetric depth, net primary productivity, and sea surface temperature as covariates. Independent validation datasets from Brazil and Qatar were used to assess model transferability. A correlative SDM using a hierarchical Gaussian process regression (HGPR) algorithm exhibited greater transferability than a hybrid SDM using HGPR, as well as correlative and hybrid forms of hierarchical generalized linear models. Additionally, models that evaluated habitat selection at the finest spatial scale and that did not account for life stage proved to be the most transferable in this study. The comparative framework presented here may be applied to a variety of species, ecological datasets (e.g., presence‐only, presence‐absence, mark‐recapture), and modeling frameworks (e.g., resource selection functions, step selection functions, occupancy models) to generate transferable predictions of species–habitat associations. We expect that SDM predictions resulting from this comparative framework will be more informative management tools and may be used to more accurately assess climate change impacts on a wide array of taxa.more » « less
- 
            Species distribution models (SDMs), which relate recorded observations (presences) and absences or background points to environmental characteristics, are powerful tools used to generate hypotheses about the biogeography, ecology, and conservation of species. Although many researchers have examined the effects of presence and background point distributions on model outputs, they have not systematically evaluated the effects of various methods of background point sampling on the performance of a single model algorithm across many species. Therefore, a consensus on the preferred methods of background point sampling is lacking. Here, we conducted presence-background SDMs for 20 vertebrate species in North America under a variety of background point conditions, varying the number of background points used, the size of the buffer used to constrain the background points around the occurrences, and the percentage of background points sampled within the buffer (“spatial weighting”). We evaluated the accuracy and transferability of the models using Boyce index, overlap with expert-generated range maps, and area overpredicted and underpredicted by the SDM (and AUC for comparability with other studies). SDM performance is highly dependent on the species modelled but is affected by the number and spread of background points. Models with little spatial weighting had high accuracy (overlap values), but extreme extrapolation errors and overprediction. In contrast, SDMs with high transferability (high Boyce index values and low overprediction) had moderate-to-high spatial weighting. These results emphasize the importance of both background points and evaluation metric selection in SDMs. For other, more successful metrics, using many background points with spatial weighting may be preferred for models with large extents. These results can assist researchers in selecting the background point parameters most relevant for their research question, allowing them to fine-tune their hypotheses on the distribution of species through space and time.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    