skip to main content


Title: Clickstream Data from a Formal Languages eTextbook
Textbooks for theory courses in CS tend to be heavy on prose and mathematics. We find that students do not engage such material, and skip or rush through it without understanding. To increase students level of engagement, we developed support within the OpenDSA eTextbook system support for creating materials based on the Programmed Instruction pedagogical paradigm. This requires near-constant activity by the student, who must read a little, ideally a sentence or a paragraph, and then answer a question or complete an exercise related to that information. Based on the question response, students are permitted to continue, or must retry to solve the exercise. Versions of the eTextbook have been used to teach the senior-level Formal Languages course at Virginia Tech for two semesters. In this demonstration, we show how students interact with material developed using the Programmed Instruction approach.  more » « less
Award ID(s):
1740765
NSF-PAR ID:
10294370
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 5th Educational Data Mining in Computer Science Education (CSEDM) Workshop
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Textbooks for theory courses in CS tend to be heavy on prose and mathematics. We find that students do not engage such material, and skip or rush through it without understanding. To increase students level of engagement, we developed support within the OpenDSA eTextbook system support for creating materials based on the Programmed Instruction pedagogical paradigm. This requires near-constant activity by the student, who must read a little, ideally a sentence or a paragraph, and then answer a question or complete an exercise related to that information. Based on the question response, students are permitted to continue, or must retry to solve the exercise. Versions of the eTextbook have been used to teach the senior-level Formal Languages course at Virginia Tech for two semesters. In this demonstration, we show how students interact with material developed using the Programmed Instruction approach. 
    more » « less
  2. null (Ed.)
    The CS Education community has developed many educational tools in recent years, such as interactive exercises. Often the developer makes them freely available for use, hosted on their own server, and usually they are directly accessible within the instructor's LMS through the LTI protocol. As convenient as this can be, instructors using these third-party tools for their courses can experience issues related to data access and privacy concerns. The tools typically collect clickstream data on student use. But they might not make it easy for the instructor to access these data, and the institution might be concerned about privacy violations. While the developers might allow and even support local installation of the tool, this can be a difficult process unless the tool carefully designed for third-party installation. And integration of small tools within larger frameworks (like a type of interactive exercise within an eTextbook framework) is also difficult without proper design. This paper describes an ongoing containerization effort for the OpenDSA eTextbook project. Our goal is both to serve our needs by creating an easier-to-manage decomposition of the many tools and sub-servers required by this complex system, and also to provide an easily installable production environment that instructors can run locally. This new system provides better access to developer-level data analysis tools and potentially removes many FERPA-related privacy concerns. We also describe our efforts to integrate Caliper Analytics into OpenDSA to expand the data collection and analysis services. We hope that our containerization architecture can help provide a roadmap for similar projects to follow 
    more » « less
  3. null (Ed.)
    Student perceptions of the complete online transition of two CS courses in response to the COVID-19 pandemic Due to the COVID-19 pandemic, universities across the globe switched from traditional Face-to-Face (F2F) course delivery to completely online. Our university declared during our Spring break that students would not return to campus, and that all courses must be delivered fully online starting two weeks later. This was challenging to both students and instructors. In this evidence-based practice paper, we present results of end-of-semester student surveys from two Spring 2020 CS courses: a programming intensive CS2 course, and a senior theory course in Formal Languages and Automata (FLA). Students indicated course components they perceived as most beneficial to their learning, before and then after the online transition, and preferences for each regarding online vs. F2F. By comparing student reactions across courses, we gain insights on which components are easily adapted to online delivery, and which require further innovation. COVID was unfortunate, but gave a rare opportunity to compare students’ reflections on F2F instruction with online instructional materials for half a semester vs. entirely online delivery of the same course during the second half. The circumstances are unique, but we were able to acquire insights for future instruction. Some course components were perceived to be more useful either before or after the transition, and preferences were not the same in the two courses, possibly due to differences in the courses. Students in both courses found prerecorded asynchronous lectures significantly less useful than in-person lectures. For CS2, online office hours were significantly less useful than in-person office hours, but we found no significant difference in FLA. CS2 students felt less supported by their instructor after the online transition, but no significant difference was indicated by FLA students. FLA students found unproctored online exams offered through Canvas more stressful than in-person proctored exams, but the opposite was indicated by CS2 students. CS2 students indicated that visual materials from an eTextbook were more useful to them after going online than before, but FLA students indicated no significant difference. Overall, students in FLA significantly preferred the traditional F2F version of the course, while no significant difference was detected for CS2 students. We did not find significant effects from gender on the preference of one mode over the other. A serendipitous outcome was learning that some changes forced by circumstance should be considered for long term adoption. Offering online lab sessions and online exams where the questions are primarily multiple choice are possible candidates. However, we found that students need to feel the presence of their instructor to feel properly supported. To determine what course components need further improvement before transitioning to fully online mode, we computed a logistic regression model. The dependent variable is the student's preference for F2F or fully online. The independent variables are the course components before and after the online transition. For both courses, in-person lectures were a significant factor negatively affecting students' preferences of the fully online mode. Similarly, for CS2, in-person labs and in-person office hours were significant factors pushing students’ preferences toward F2F mode. 
    more » « less
  4. This research evaluates the impact of switching college engineering courses from in-person instruction to emergency remote learning among engineering students at a university in the Midwest. The study aimed to answer the question: What were the concerns and perceived challenges students faced when traditional in-person engineering courses suddenly transitioned to remote learning? The goal of this study is to uncover the challenges students were facing in engineering online courses and to understand students’ concerns. Our findings can help improve teaching instruction to provide students with previously unavailable educational assistance for online engineering courses. We collected online survey responses during weeks 8 and 9 of the academic semester, shortly after the COVID-19 shutdown and emergency transition to remote learning in Spring 2020. The survey included two open-ended questions which inquired about students’ feedback about moving the class online, and one two-item scale which assessed students’ confidence in online engineering learning. Data analysis for the open-ended questions was guided by the theoretical framework - Social Cognitive Career Theory [1] that explores how context, person factors and social cognitions contribute to career goals, interests and actions. A phenomenological approach [2] was conducted to understand the experience of these students. Open coding and axial coding [2] methods were used to create initial categories then themes related to students' concerns and challenges. Data from the two-item scale was evaluated using descriptive statistics: means, standard deviations, and ranges. Four main themes with separate sub-categories emerged from the student responses: 1) Instructor’s ability to teach course online (Instructional limitations, Seeking help, Increased Workload), 2) Student’s ability to learn online (Time Management, Lower engagement and motivation, Harder to absorb material, Hard to focus, Worry about performance), 3) Difficulties outside of class (Technology issues), and 4) No concerns. Students seemed more concerned about their ability to learn the material (48% of responses) than the instructor’s ability to teach the material (36% of responses). The instructional limitations or lack of instructional support (22% of responses) and time management (12% of responses) were among the major concerns in the sub-categories. The results from two-item scale indicated participants' s confidence in their ability to master their classroom knowledge was at an intermediate level via online instruction (6/10), and participants' confidence in the instructor's ability to teach knowledge in online classes is moderate to high (7/10). The results align with the open-ended question response in which students were somewhat more concerned about their ability to learn than the instructor’s ability to teach. The themes and analysis will be a valuable tool to help institutions and instructors improve student learning experiences. 
    more » « less
  5. Shaffer, Justin (Ed.)
    ABSTRACT Argumentation is vital in the development of scientific knowledge, and students who can argue from evidence and support their claims develop a deeper understanding of science. In this study, the Argument-Driven Inquiry instruction model was implemented in a two-semester sequence of introductory biology laboratories. Student’s scientific argumentation sessions were video recorded and analyzed using the Assessment of Scientific Argumentation in the Classroom observation protocol. This protocol separates argumentation into three subcategories: cognitive (how the group develops understanding), epistemic (how consistent the group’s process is with the culture of science), and social (how the group members interact with each other). We asked whether students are equally skilled in all subcategories of argumentation and how students’ argumentation skills differ based on lab exercise and course. Students scored significantly higher on the social than the cognitive and epistemic subcategories of argumentation. Total argumentation scores were significantly different between the two focal investigations in Biology Laboratory I but not between the two focal investigations in Biology Laboratory II. Therefore, student argumentation skills were not consistent across content; the design of the lab exercises and their implementation impacted the level of argumentation that occurred. These results will ultimately aid in the development and expansion of Argument-Driven Inquiry instructional models, with the goal of further enhancing students’ scientific argumentation skills and understanding of science. 
    more » « less