The Wire Flyer towed vehicle is a new platform able to collect high-resolution water column sections. The vehicle is motivated by a desire to effectively capture spatial structures at the submesoscale. The vehicle fills a niche that is not achieved by other existing towed and repeat profiling systems. The Wire Flyer profiles up and down along a ship-towed cable autonomously using controllable wings for propulsion. At ship speeds between 2 and 5 kt (1.02–2.55ms21), the vehicle is able to profile over prescribed depth bands down to 1000 m. The vehicle carries sensors for conductivity, temperature, depth, oxygen, turbidity, chlorophyll, pH, and oxidation reduction potential. During normal operations the vehicle is typically commanded to cover vertical regions between 300 and 400min height with profiles that repeat at kilometer spacing. The vertical profiling speed can be user specified up to 150mmin21. The high-density sampling capability at depths below the upper few hundred meters makes the vehicle distinct from other systems. During operations an acoustic modem is used to communicate with the vehicle to provide status information, data samples, and the ability to modify the sampling pattern. This paper provides an overview of the vehicle system, describes its operation, and presents results from several cruises.
more »
« less
The Wire Flyer Towed Profiling System
The Wire Flyer towed vehicle is a new platform able to collect high-resolution water column sections. The vehicle is motivated by a desire to effectively capture spatial structures at the submesoscale. The vehicle fills a niche that is not achieved by other existing towed and repeat profiling systems. The Wire Flyer profiles up and down along a ship-towed cable autonomously using controllable wings for propulsion. At ship speeds between 2 and 5 kt (1.02–2.55 m s−1), the vehicle is able to profile over prescribed depth bands down to 1000 m. The vehicle carries sensors for conductivity, temperature, depth, oxygen, turbidity, chlorophyll, pH, and oxidation reduction potential. During normal operations the vehicle is typically commanded to cover vertical regions between 300 and 400 m in height with profiles that repeat at kilometer spacing. The vertical profiling speed can be user specified up to 150 m min−1. The high-density sampling capability at depths below the upper few hundred meters makes the vehicle distinct from other systems. During operations an acoustic modem is used to communicate with the vehicle to provide status information, data samples, and the ability to modify the sampling pattern. This paper provides an overview of the vehicle system, describes its operation, and presents results from several cruises.
more »
« less
- Award ID(s):
- 1634559
- PAR ID:
- 10084348
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Atmospheric and Oceanic Technology
- Volume:
- 36
- Issue:
- 2
- ISSN:
- 0739-0572
- Page Range / eLocation ID:
- p. 161-182
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Idealized simulations of autonomous underwater glider sampling along sawtooth vertical–horizontal paths are carried out in two high-resolution ocean numerical models to explore the accuracy of isopycnal vertical displacement and geostrophic velocity profile estimates. The effects of glider flight speed, sampling pattern geometry, and measurement noise on velocity profile accuracy are explored to interpret recent full-ocean-depth Deepglider observations and provide sampling recommendations for glider missions. The average magnitude of velocity error profiles, defined as the difference between simulated glider-sampled geostrophic velocity profile estimates and model velocity profiles averaged over the spatial and temporal extent of corresponding simulated glider paths, is less than 0.02 m s−1over most of the water column. This accuracy and the accuracy of glider geostrophic shear profile estimates are dependent on the ratio of mesoscale eddy to internal wave velocity amplitude. Projection of normal modes onto full-depth vertical profiles of model and simulated glider isopycnal vertical displacement and geostrophic velocity demonstrates that gliders are capable of resolving barotropic and baroclinic structure through at least the eighth baroclinic mode.more » « less
-
Abstract Generating mechanisms and parameterizations for enhanced turbulence in the wake of a seamount in the path of the Kuroshio are investigated. Full-depth profiles of finescale temperature, salinity, horizontal velocity, and microscale thermal-variance dissipation rate up- and downstream of the ∼10-km-wide seamount were measured with EM-APEX profiling floats and ADCP moorings. Energetic turbulent kinetic energy dissipation ratesand diapycnal diffusivitiesabove the seamount flanks extend at least 20 km downstream. This extended turbulent wake length is inconsistent with isotropic turbulence, which is expected to decay in less than 100 m based on turbulence decay time ofN−1∼ 100 s and the 0.5 m s−1Kuroshio flow speed. Thus, the turbulent wake must be maintained by continuous replenishment which might arise from (i) nonlinear instability of a marginally unstable vortex wake, (ii) anisotropic stratified turbulence with expected downstream decay scales of 10–100 km, and/or (iii) lee-wave critical-layer trapping at the base of the Kuroshio. Three turbulence parameterizations operating on different scales, (i) finescale, (ii) large-eddy, and (iii) reduced-shear, are tested. Averageεvertical profiles are well reproduced by all three parameterizations. Vertical wavenumber spectra for shear and strain are saturated over 10–100 m vertical wavelengths comparable to water depth with spectral levels independent ofεand spectral slopes of −1, indicating that the wake flows are strongly nonlinear. In contrast, vertical divergence spectral levels increase withε.more » « less
-
Abstract Local atmospheric recirculation flows (i.e., river winds) induced by thermal contrast between wide Amazon rivers and adjacent forests could affect pollutant dispersion, but observational platforms for investigating this possibility have been lacking. Here we collected daytime vertical profiles of meteorological variables and chemical concentrations up to 500 m with a copter-type unmanned aerial vehicle during the 2019 dry season. Cluster analysis showed that a river-forest recirculation flow occurred for 23% (13 of 56) of the profiles. In fair weather, the thermally driven river winds fully developed for synoptic wind speeds below 4 m s−1, and during these periods the vertical profiles of carbon monoxide and total oxidants (defined as ozone and nitrogen dioxide) were altered. Numerical modeling shows that the river winds can recirculate pollution back toward the riverbank. There are implications regarding air quality for the many human settlements along the rivers throughout northern Brazil.more » « less
-
Abstract Some planktonic patches have markedly higher concentrations of organisms compared to ambient conditions and are <5 m in thickness (i.e. thin layers). Conventional net sampling techniques are unable to resolve this vertical microstructure, while optical imaging systems can measure it for limited durations. Zooglider, an autonomous zooplankton-sensing glider, uses a low-power optical imaging system (Zoocam) to resolve mesozooplankton at a vertical scale of 5 cm while making concurrent physical and acoustic measurements (Zonar). In March 2017, Zooglider was compared with traditional nets (MOCNESS) and ship-based acoustics (Simrad EK80). Zoocam recorded significantly higher vertically integrated abundances of smaller copepods and appendicularians, and larger gelatinous predators and mineralized protists, but similar abundances of chaetognaths, euphausiids, and nauplii. Differences in concentrations and size-frequency distributions are attributable to net extrusion and preservation artifacts, suggesting advantages of in situ imaging of organisms by Zooglider. Zoocam detected much higher local concentrations of copepods and appendicularians (53 000 and 29 000 animals m−3, respectively) than were resolvable by nets. The EK80 and Zonar at 200 kHz agreed in relative magnitude and distribution of acoustic backscatter. The profiling capability of Zooglider allows for deeper high-frequency acoustic sampling than conventional ship-based acoustics.more » « less
An official website of the United States government
