skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifying high-impact invasive plants likely to shift into northern New England with climate change
Abstract Invasive plants are expanding their ranges due to climate change, creating new challenges for invasive species management. Early detection and rapid response could address some nascent invasions, but limited resources make it impossible to monitor for every range-shifting species. Here, we aimed to create a more focused watch list by evaluating the impacts of 87 plant species projected to shift into northern New England (the states of Maine, New Hampshire, and/or Vermont). We used the Environmental Impact Classification for Alien Taxa (EICAT) protocol to evaluate all ecological impacts reported in the scientific literature, scoring ecological impacts from 1 (minimal concern) to 4 (major) depending on the level of reported impact. For each species, we also recorded any reported impacts on socioeconomic systems (agriculture, human health, or economics) as “present.” We found 24 range-shifting species with impacts on ecological communities, of which 22 have reported impacts in ecosystems common to northern New England. Almost all of these species also had impacts on socioeconomic systems and were available for purchase at ornamental plant retailers or online. Thus, these species can be considered high risk to northern New England with climate change based on their large negative impacts and potential to arrive quickly with deliberate human introduction. Our study demonstrates the use of impact assessments for creating targeted priority lists for invasive species monitoring and management.  more » « less
Award ID(s):
1852326
PAR ID:
10294548
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Invasive Plant Science and Management
Volume:
14
Issue:
2
ISSN:
1939-7291
Page Range / eLocation ID:
57 to 63
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Non-native, invasive plants are projected to shift their ranges with climate change, creating hotspots of risk where a multitude of novel species may soon establish and spread. The Northeast U.S. is one such hotspot. However, because monitoring for novel species is costly, these range-shifting invasive plants need to be prioritized. Preventing negative impacts is a key goal of management, thus, comparing the potential impacts of range-shifting invasive species could inform this prioritization. Here, we adapted the environmental impacts classification for alien taxa protocol to evaluate potential impacts of 100 invasive plants that could establish either currently or by 2050 in the states of New York, Massachusetts, Connecticut, or Rhode Island. We searched Web of Science for each species and identified papers reporting ecological, economic, human health, or agricultural impacts. We scored ecological impacts from 1 (‘minimal concern’) to 4 (‘major’) and socio-ecological impacts as present or absent. We evaluated 865 impact studies and categorized 20 species as high-impact, 36 as medium-impact, and 26 as low-impact. We further refined high-impact invasive species based on whether major impacts affect ecosystems found in Northeast U.S. and identified five high-priority species: Anthriscus caucalis, Arundo donax, Avena barbata, Ludwigia grandiflora, and Rubus ulmifolius. Additional research is needed for 18 data-deficient species, which had no studies reporting impacts. Identifying and prioritizing range-shifting invasive plants provides a unique opportunity for early detection and rapid response that targets future problem species before they can establish and spread. This research illustrates the feasibility of using impacts assessments on range-shifting invasive species in order to inform proactive policy and management. 
    more » « less
  2. In an era where human influence pervades every corner of the natural world, improving our understanding the how ecosystems are structured and function has never been more critical. Dryland ecosystems, occupying over 40% of the plant’s land surface area, represent the largest terrestrial biome on earth. Drylands are particularly vulnerable to global change pressures such as rising temperatures, altered precipitation regimes, and the spread of invasive species. The Earth's climate is changing rapidly, exacerbating these pressures and threatening the productivity, biodiversity, and function of dryland ecosystems. The interactions between these shifting pressures and disturbances, both natural and anthropogenic, add layers of complexity that challenge our understanding of these ecosystems. In my dissertation, I used a combination of observational and experimental studies to investigate the impacts of disturbances on vegetation within dryland ecosystems, focusing particularly on the interactions between climate and biological factors known to influence the structure and function of plants. A rainfall manipulation and mechanical disturbance experiment repeated in three climatically distinct North America dryland ecosystems revealed complex, site-specific responses of dominant shrubs to environmental stressors. Findings indicated that individual traits, such as plant size, significantly influence sensitivity to climate changes, highlighting the need for localized management strategies. A study assessing the trophic impacts from a native twig girdling beetle on the above ground biomass of honey mesquite (Prosopis glandulosa) found significant year-to-year variability in beetle activity, with notable reductions in mesquite biomass due to girdling that exceeded estimates for annual net primary production for some years. A study assessing the influence of fire on biodiversity of soil seed bank across the Mojave found increased diversity in burned areas, but highlights the dominance of invasive species, ultimately leading to biodiversity loss and community homogenization. These findings underscore the significant impact of invasive species and the necessity of management practices to mitigate their spread. Collectively, this dissertation provides a nuanced understanding of how natural and novel disturbance regimes affect dryland ecosystems. The differential responses among species and ecosystems suggest that effective management strategies must consider local ecological contexts to preserve productivity and biodiversity amidst rapidly changing global pressures. 
    more » « less
  3. Abstract Plants track changing climate partly by shifting their phenology, the timing of recurring biological events. It is unknown whether these observed phenological shifts are sufficient to keep pace with rapid climate changes. Phenological mismatch, or the desynchronization between the timing of critical phenological events, has long been hypothesized but rarely quantified on a large scale. It is even less clear how human activities have contributed to this emergent phenological mismatch. In this study, we used remote sensing observations to systematically evaluate how plant phenological shifts have kept pace with warming trends at the continental scale. In particular, we developed a metric of spatial mismatch that connects empirical spatiotemporal data to ecological theory using the “velocity of change” approach. In northern mid‐to high‐latitude regions (between 30–70°N) over the last three decades (1981–2014), we found evidence of a widespread mismatch between land surface phenology and climate where isolines of phenology lag behind or move in the opposite direction to the isolines of climate. These mismatches were more pronounced in human‐dominated landscapes, suggesting a relationship between human activities and the desynchronization of phenology dynamics with climate variations. Results were corroborated with independent ground observations that indicate the mismatch of spring phenology increases with human population density for several plant species. This study reveals the possibility that not even some of the foremost responses in vegetation activity match the pace of recent warming. This systematic analysis of climate‐phenology mismatch has important implications for the sustainable management of vegetation in human‐dominated landscapes under climate change. 
    more » « less
  4. null (Ed.)
    Over the past five decades, many studies have examined the Janzen-Connell hypothesis, which posits that host-specific natural enemies, such as insect herbivores and fungal pathogens, promote plant species coexistence by providing a recruitment advantage to rare plant species. Recently, researchers have been exploring new and exciting angles on plant-enemy interactions that have yielded novel insights into this long-standing hypothesis. Here, we highlight some empirical advances in our understanding of plant-enemy interactions in tropical forests, including improved understanding of variation in plant species’ susceptibility to enemy effects, as well as insect and pathogen host ranges. We then review recent advances in related ecological theory. These theoretical studies have confirmed that specialist natural enemies can promote tree diversity. However, they have also shown that the impact of natural enemies may be weakened, or that natural enemies could even cause species exclusion, depending on enemy host range, the spatial extent of enemy effects, and variation among plant species in seed dispersal or enemy susceptibility. Finally, we end by discussing how human impacts on tropical forests, such as fragmentation, hunting, and climate change, may alter the plant-enemy interactions that contribute to tropical forest diversity. 
    more » « less
  5. Climate change and invasive species are major threats to native biodiversity, but few empirical studies have examined their combined effects at large spatial and temporal scales. Using 21,917 surveys collected over 30 years, we quantified the impacts of climate change on the past and future distributions of five interacting native and invasive trout species throughout the northern Rocky Mountains, USA. We found that the occupancy of native bull trout and cutthroat trout declined by 18 and 6%, respectively (1993–2018), and was predicted to decrease by an additional 39 and 16% by 2080. However, reasons for these occupancy reductions markedly differed among species: Climate-driven increases in water temperature and decreases in summer flow likely caused declines of bull trout, while climate-induced expansion of invasive species largely drove declines of cutthroat trout. Our results demonstrate that climate change can affect ecologically similar, co-occurring native species through distinct pathways, necessitating species-specific management actions. 
    more » « less