skip to main content


Title: Identifying high-impact invasive plants likely to shift into northern New England with climate change
Abstract Invasive plants are expanding their ranges due to climate change, creating new challenges for invasive species management. Early detection and rapid response could address some nascent invasions, but limited resources make it impossible to monitor for every range-shifting species. Here, we aimed to create a more focused watch list by evaluating the impacts of 87 plant species projected to shift into northern New England (the states of Maine, New Hampshire, and/or Vermont). We used the Environmental Impact Classification for Alien Taxa (EICAT) protocol to evaluate all ecological impacts reported in the scientific literature, scoring ecological impacts from 1 (minimal concern) to 4 (major) depending on the level of reported impact. For each species, we also recorded any reported impacts on socioeconomic systems (agriculture, human health, or economics) as “present.” We found 24 range-shifting species with impacts on ecological communities, of which 22 have reported impacts in ecosystems common to northern New England. Almost all of these species also had impacts on socioeconomic systems and were available for purchase at ornamental plant retailers or online. Thus, these species can be considered high risk to northern New England with climate change based on their large negative impacts and potential to arrive quickly with deliberate human introduction. Our study demonstrates the use of impact assessments for creating targeted priority lists for invasive species monitoring and management.  more » « less
Award ID(s):
1852326
NSF-PAR ID:
10294548
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Invasive Plant Science and Management
Volume:
14
Issue:
2
ISSN:
1939-7291
Page Range / eLocation ID:
57 to 63
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Non-native, invasive plants are projected to shift their ranges with climate change, creating hotspots of risk where a multitude of novel species may soon establish and spread. The Northeast U.S. is one such hotspot. However, because monitoring for novel species is costly, these range-shifting invasive plants need to be prioritized. Preventing negative impacts is a key goal of management, thus, comparing the potential impacts of range-shifting invasive species could inform this prioritization. Here, we adapted the environmental impacts classification for alien taxa protocol to evaluate potential impacts of 100 invasive plants that could establish either currently or by 2050 in the states of New York, Massachusetts, Connecticut, or Rhode Island. We searched Web of Science for each species and identified papers reporting ecological, economic, human health, or agricultural impacts. We scored ecological impacts from 1 (‘minimal concern’) to 4 (‘major’) and socio-ecological impacts as present or absent. We evaluated 865 impact studies and categorized 20 species as high-impact, 36 as medium-impact, and 26 as low-impact. We further refined high-impact invasive species based on whether major impacts affect ecosystems found in Northeast U.S. and identified five high-priority species: Anthriscus caucalis, Arundo donax, Avena barbata, Ludwigia grandiflora, and Rubus ulmifolius. Additional research is needed for 18 data-deficient species, which had no studies reporting impacts. Identifying and prioritizing range-shifting invasive plants provides a unique opportunity for early detection and rapid response that targets future problem species before they can establish and spread. This research illustrates the feasibility of using impacts assessments on range-shifting invasive species in order to inform proactive policy and management. 
    more » « less
  2. Abstract Aim

    Preventing the spread of range‐shifting invasive species is a top priority for mitigating the impacts of climate change. Invasive plants become abundant and cause negative impacts in only a fraction of their introduced ranges, yet projections of invasion risk are almost exclusively derived from models built using all non‐native occurrences and neglect abundance information.

    Location

    Eastern USA.

    Methods

    We compiled abundance records for 144 invasive plant species from five major growth forms. We fit over 600 species distribution models based on occurrences of abundant plant populations, thus projecting which areas in the eastern United States (U.S.) will be most susceptible to invasion under current and +2°C climate change.

    Results

    We identified current invasive plant hotspots in the Great Lakes region, mid‐Atlantic region, and along the northeast coast of Florida and Georgia, each climatically suitable for abundant populations of over 30 invasive plant species. Under a +2°C climate change scenario, hotspots will shift an average of 213 km, predominantly towards the northeast U.S., where some areas are projected to become suitable for up to 21 new invasive plant species. Range shifting species could exacerbate impacts of up to 40 invasive species projected to sustain populations within existing hotspots. On the other hand, within the eastern U.S., 62% of species will experience decreased suitability for abundant populations with climate change. This trend is consistent across five plant growth forms.

    Main Conclusions

    We produced species range maps and state‐specific watch lists from these analyses, which can inform proactive regulation, monitoring, and management of invasive plants most likely to cause future ecological impacts. Additionally, areas we identify as becoming less suitable for abundant populations could be prioritized for restoration of climate‐adapted native species. This research provides a first comprehensive assessment of risk from abundant plant invasions across the eastern U.S.

     
    more » « less
  3. null (Ed.)
    Species distributions, abundance, and interactions have always been influenced by human activity and are currently experiencing rapid change. Biodiversity benchmark surveys traditionally require intense human labor inputs to find, identify, and record organisms limiting the rate and impact of scientific enquiry and discovery. Recent emergence and advancement of monitoring technologies have improved biodiversity data collection to a scale and scope previously unimaginable. Community science web platforms, smartphone applications, and technology assisted identification have expedited the speed and enhanced the volume of observational data all while providing open access to these data worldwide. How to integrate and leverage the data into valuable information on how species are changing in space and time requires new best practices in computational and analytical approaches. Here we integrate data from three community science repositories to explore how a specialist herbivore distribution changes in relation to host plant distributions and other environmental factors. We generate a series of temporally explicit species distribution models to generate range predictions for a specialist insect herbivore ( Papilio cresphontes ) and three predominant host-plant species. We find that this insect species has experienced rapid northern range expansion, likely due to a combination of the range of its larval host plants and climate changes in winter. This case study shows rapid data collection through large scale community science endeavors can be leveraged through thoughtful data integration and transparent analytic pipelines to inform how environmental change impacts where species are and their interactions for a more cost effective method of biodiversity benchmarking. 
    more » « less
  4. Abstract

    Plants track changing climate partly by shifting their phenology, the timing of recurring biological events. It is unknown whether these observed phenological shifts are sufficient to keep pace with rapid climate changes. Phenological mismatch, or the desynchronization between the timing of critical phenological events, has long been hypothesized but rarely quantified on a large scale. It is even less clear how human activities have contributed to this emergent phenological mismatch. In this study, we used remote sensing observations to systematically evaluate how plant phenological shifts have kept pace with warming trends at the continental scale. In particular, we developed a metric of spatial mismatch that connects empirical spatiotemporal data to ecological theory using the “velocity of change” approach. In northern mid‐to high‐latitude regions (between 30–70°N) over the last three decades (1981–2014), we found evidence of a widespread mismatch between land surface phenology and climate where isolines of phenology lag behind or move in the opposite direction to the isolines of climate. These mismatches were more pronounced in human‐dominated landscapes, suggesting a relationship between human activities and the desynchronization of phenology dynamics with climate variations. Results were corroborated with independent ground observations that indicate the mismatch of spring phenology increases with human population density for several plant species. This study reveals the possibility that not even some of the foremost responses in vegetation activity match the pace of recent warming. This systematic analysis of climate‐phenology mismatch has important implications for the sustainable management of vegetation in human‐dominated landscapes under climate change.

     
    more » « less
  5. Abstract

    Abiotic environmental change, local species extinctions and colonization of new species often co‐occur. Whether species colonization is driven by changes in abiotic conditions or reduced biotic resistance will affect community functional composition and ecosystem management. We use a grassland experiment to disentangle effects of climate warming and community diversity on plant species colonization. Community diversity had dramatic impacts on the biomass, richness and traits of plant colonists. Three times as many species colonized the monocultures than the high diversity 17 species communities (~30 vs. 10 species), and colonists collectively produced 10 times as much biomass in the monocultures than the high diversity communities (~30 vs. 3 g/m2). Colonists with resource‐acquisitive strategies (high specific leaf area, light seeds, short heights) accrued more biomass in low diversity communities, whereas species with conservative strategies accrued most biomass in high diversity communities. Communities with higher biomass of resident C4 grasses were more resistant to colonization by legume, nonlegume forb and C3 grass colonists, but not by C4 grass colonists. Compared with effects of diversity, 6 years of 3°C‐above‐ambient temperatures had little impact on plant colonization. Warmed subplots had ~3 fewer colonist species than ambient subplots and selected for heavier seeded colonists. They also showed diversity‐dependent changes in biomass of C3 grass colonists, which decreased under low diversity and increased under high diversity. Our findings suggest that species colonization is more strongly affected by biotic resistance from residents than 3°C of climate warming. If these results were extended to invasive species management, preserving community diversity should help limit plant invasion, even under climate warming.

     
    more » « less