skip to main content

Title: Natural Enemies and the Maintenance of Tropical Tree Diversity: Recent Insights and Implications for the Future of Biodiversity in a Changing World
Over the past five decades, many studies have examined the Janzen-Connell hypothesis, which posits that host-specific natural enemies, such as insect herbivores and fungal pathogens, promote plant species coexistence by providing a recruitment advantage to rare plant species. Recently, researchers have been exploring new and exciting angles on plant-enemy interactions that have yielded novel insights into this long-standing hypothesis. Here, we highlight some empirical advances in our understanding of plant-enemy interactions in tropical forests, including improved understanding of variation in plant species’ susceptibility to enemy effects, as well as insect and pathogen host ranges. We then review recent advances in related ecological theory. These theoretical studies have confirmed that specialist natural enemies can promote tree diversity. However, they have also shown that the impact of natural enemies may be weakened, or that natural enemies could even cause species exclusion, depending on enemy host range, the spatial extent of enemy effects, and variation among plant species in seed dispersal or enemy susceptibility. Finally, we end by discussing how human impacts on tropical forests, such as fragmentation, hunting, and climate change, may alter the plant-enemy interactions that contribute to tropical forest diversity.
Authors:
;
Award ID(s):
1845403
Publication Date:
NSF-PAR ID:
10213120
Journal Name:
Annals of the Missouri Botanical Garden
Volume:
105
Issue:
3
Page Range or eLocation-ID:
377 to 392
ISSN:
0026-6493
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Animal-associated microbes are highly variable, contributing to a diverse set of symbiont-mediated phenotypes. Given that host and symbiont genotypes, and their interactions, can impact symbiont-based phenotypes across environments, there is potential for extensive variation in fitness outcomes. Pea aphids, Acyrthosiphon pisum , host a diverse assemblage of heritable facultative symbionts (HFS) with characterized roles in host defense. Protective phenotypes have been largely studied as single infections, but pea aphids often carry multiple HFS species, and particular combinations may be enriched or depleted compared to expectations based on chance. Here, we examined the consequences of single infection versus coinfection withmore »two common HFS exhibiting variable enrichment, the antiparasitoid Hamiltonella defensa and the antipathogen Regiella insecticola , across three host genotypes and environments. As expected, single infections with either H. defensa or R. insecticola raised defenses against their respective targets. Single infections with protective H. defensa lowered aphid fitness in the absence of enemy challenge, while R. insecticola was comparatively benign. However, as a coinfection, R. insecticola ameliorated H. defensa infection costs. Coinfected aphids continued to receive antiparasitoid protection from H. defensa , but protection was weakened by R. insecticola in two clones. Notably, H. defensa eliminated survival benefits conferred after pathogen exposure by coinfecting R. insecticola . Since pathogen sporulation was suppressed by R. insecticola in coinfected aphids, the poor performance likely stemmed from H. defensa -imposed costs rather than weakened defenses. Our results reveal a complex set of coinfection outcomes which may partially explain natural infection patterns and suggest that symbiont-based phenotypes may not be easily predicted based solely on infection status. IMPORTANCE The hyperdiverse arthropods often harbor maternally transmitted bacteria that protect against natural enemies. In many species, low-diversity communities of heritable symbionts are common, providing opportunities for cooperation and conflict among symbionts, which can impact the defensive services rendered. Using the pea aphid, a model for defensive symbiosis, we show that coinfections with two common defensive symbionts, the antipathogen Regiella and the antiparasite Hamiltonella , produce outcomes that are highly variable compared to single infections, which consistently protect against designated enemies. Compared to single infections, coinfections often reduced defensive services during enemy challenge yet improved aphid fitness in the absence of enemies. Thus, infection with multiple symbionts does not necessarily create generalist aphids with “Swiss army knife” defenses against numerous enemies. Instead, particular combinations of symbionts may be favored for a variety of reasons, including their abilities to lessen the costs of other defensive symbionts when enemies are not present.« less
  2. Eigenbrode, Sanford (Ed.)
    Abstract Climate change-induced salinity intrusion into agricultural soils is known to negatively impact crop production and food security. However, the effects of salinity increase on plant–herbivore–natural enemy systems and repercussions for pest suppression services are largely unknown. Here, we examine the effects of increased salinity on communities of rice (Oryza sativa), brown planthopper (BPH), Nilaparvata lugens, and green mirid bug (GMB), Cyrtorhinus lividipennis, under greenhouse conditions. We found that elevated salinity significantly suppressed the growth of two rice cultivars. Meanwhile, BPH population size also generally decreased due to poor host plant quality induced by elevated salinity. The highest BPH densitymore »occurred at 2.0 dS/m salinity and declined thereafter with increasing salinity, irrespective of rice cultivar. The highest population density of GMB also occurred under control conditions and decreased significantly with increasing salinity. Higher salinity directly affected the rice crop by reducing plant quality measured with reference to biomass production and plant height, whereas inducing population developmental asynchrony between BPH and GMB observed at 2 dS/m salinity and potentially uncoupling prey–predator dynamics. Our results suggest that increased salinity has harmful effects on plants, herbivores, natural enemies, as well as plant–pest–predator interactions. The effects measured here suggest that the bottom-up effects of predatory insects on rice pests will likely decline in rice produced in coastal areas where salinity intrusion is common. Our findings indicate that elevated salinity influences tritrophic interactions in rice production landscapes, and further research should address resilient rice insect pest management combining multipests and predators in a changing environment.« less
  3. Abstract Declining snow cover is reshaping ecological communities. Early loss of snow cover initiates changes in key interactions that mediate herbivore abundance, i.e., top-down and bottom-up effects. In this study, we used a field experiment to test the effects of host plant water stress and phenology on the multitrophic interactions that determine aphid abundance. The aphid, Aphis asclepiadis , in our study system colonizes the flowering stalks of the host plant Ligusticum porteri and relies on a protection mutualism with ants. We added snow and water to replicate host plants and tested for a variety of phenological and physiological responsesmore »to these treatments. Relative to host plants in ambient conditions, both water and snow addition reduced key signals of water stress (senescence and abscisic acid levels) and increased seed set. While aphid colonies were generally larger with reduced host plant water stress, the ant–aphid mutualism interacted with plant quality in complex ways. Without ant tending, we did not detect differences in aphid colony growth with host plant treatment. When tended by ants, aphid colony growth was greatest on host plants with snow addition. Host plant quality also altered the benefits exchanged in this mutualism. Ant-tended colonies hosted by plants with snow addition produced honeydew enriched in trehalose, which may have decreased both ant and natural enemy abundance. Our results suggest that early loss of snow reduces aphid abundance by creating low-quality, water-stressed host plants, and this effect may be exacerbated by natural enemies and the costs of ant attendance.« less
  4. Druzhinina, Irina S. (Ed.)
    ABSTRACT Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability. To test this overarching hypothesis, we explored the influence of predominant forest mycorrhizal type and mineral N availabilitymore »on soil fungal communities using next-generation amplicon sequencing. Soils from four temperate hardwood forests in southern Indiana, United States, were studied; three forests formed a natural gradient of mycorrhizal dominance (100% AM tree basal area to 100% ECM basal area), while the fourth forest contained a factorial experiment testing long-term N addition in both dominant mycorrhizal types. We found that overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community mycorrhizal associations explained more variation in fungal community composition than abiotic variables, including soil depth, SOM content, nitrification rate, and mineral N availability. Our findings suggest that tree mycorrhizal associations may be good predictors of the diversity, composition, and functional potential of soil fungal communities in temperate hardwood forests. These observations help explain differing biogeochemistry and community dynamics found in forest stands dominated by differing mycorrhizal types. IMPORTANCE Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e., arbuscular [AM] versus ectomycorrhizal [ECM] associations) affect soil fungal communities by altering the diversity and relative abundance of saprotrophic and plant-pathogenic fungi along natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted to become more AM dominant with climate change, studies examining soil communities along mycorrhizal gradients are necessary to understand how these global changes may alter future soil fungal communities and their functional potential. Ours, along with other recent studies, identify possible global trends in the frequency of specific fungal functional groups responsible for nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations.« less
  5. Global insect pollinator declines have prompted habitat restoration efforts, including pollinator-friendly gardening. Gardens can provide nectar and pollen for adult insects and offer reproductive resources, such as nesting sites and caterpillar host plants. We conducted a review and meta-analysis to examine how decisions made by gardeners on plant selection and garden maintenance influence pollinator survival, abundance, and diversity. We also considered characteristics of surrounding landscapes and the impacts of pollinator natural enemies. Our results indicated that pollinators responded positively to high plant species diversity, woody vegetation, garden size, and sun exposure and negatively to the separation of garden habitats frommore »natural sites. Within-garden features more strongly influenced pollinators than surrounding landscape factors. Growing interest in gardening for pollinators highlights the need to better understand how gardens contribute to pollinator conservation and how some garden characteristics can enhance the attractiveness and usefulness of gardens to pollinators. Further studies examining pollinator reproduction, resource acquisition, and natural enemies in gardens and comparing gardens with other restoration efforts and to natural habitats are needed to increase the value of human-made habitats for pollinators.« less