The effect of olefin addition to a stream of dimethyl ether on the methanol homologation reaction is investigated using iron-substituted zeolites Fe-beta and Fe-ZSM-5. The reaction was investigated using plug-flow microreactors in the temperature range of 240-400 degrees C, at a total pressure of 0.239 MPa and a WHSV of 6.12 (g DME/ gcat-hr). For Fe-beta (Si/Fe= 9.2) catalysts, isobutene co-feeding almost doubles dimethyl ether (DME) consumption rate and shifts selectivity towards larger olefins with carbon numbers from 5 to 7. Addition of isobutene above 6.3%, however, resulted in a reduction of DME consumption rates, an effect assigned to the replacement of surface methoxy groups for adsorbed olefins in the zeolite pores. Below a temperature of 340 degrees C hydride-transfer rates are negligible; reaction rates are stable for over 5.5 h and the products consist almost exclusively of olefins and a small amount of methane. Above 360 degrees C the onset of catalytic hydride transfer processes is observed leading to fast catalyst deactivation rates and an increase in the concentration of aromatic species. Iron ZSM-5 (Si/Fe = 21.4) catalysts under similar reaction conditions consumes methanol faster than Febeta at approximately three times the TOF (on a per iron basis). The Fe-ZSM-5 catalyst was selective to a distribution of products (C5 to C8) as compared to Fe-beta which was selective to primarily C5 and C7. Co-feeding larger olefins (2-methyl-2-butene, 2,3-dimethyl-2-butene, 2,3,3-trimethyl-1-butene, and 2,4,4-trimethyl-2-pentene) at a 3.9% olefin concentration over Fe-beta changed selectivity towards cracking products (C4 compounds such as isobutene). As the size of the olefin increases, a reduction of DME consumption rate is also observed. These results show that co-feeding olefins with DME over Fe-zeolites is a promising route to increase methylation rates at relatively low temperatures producing larger branched olefins and that the product distribution is highly dependent on the zeolite pore size and structure of the olefin.
more »
« less
Ethylene oligomerization into linear olefins over cobalt oxide on carbon catalyst
Here, we show that C 4 –C 12 linear olefins, including linear alpha olefins, can be selectively produced from ethylene over a stable cobalt oxide on carbon catalyst. Both bulk and surface cobalt phases are CoO when the catalyst is stable, suggesting CoO is the stable cobalt phase for oligomerization. During the reaction, polyethylene forms in the catalyst pores which influences the product selectivity. The catalyst is more stable at higher temperatures (∼200 °C) likely due to reduction of Co 3 O 4 to CoO while rapid deactivation is observed at lower temperatures ( e.g. , 80–140 °C). The product selectivity can be fit to two different Schulz Flory distributions, one from C 4 to C 10 olefins and one above C 10 olefins, suggesting that transport restrictions influence product selectivity. At 48.3% conversion, product linearities up to C 12 olefins are above 90%, making it the most selective heterogeneous catalyst to linear olefins to date in the absence of activators and/or solvents.
more »
« less
- Award ID(s):
- 1953926
- PAR ID:
- 10294601
- Date Published:
- Journal Name:
- Catalysis Science & Technology
- Volume:
- 11
- Issue:
- 10
- ISSN:
- 2044-4753
- Page Range / eLocation ID:
- 3599 to 3608
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A photoredox/cobalt dual catalytic procedure has been developed that allows benzoylation of olefins. Here the photoredox catalyst effects the decarboxylation of α‐ketoacids to form benzoyl radicals. After addition of this radical to styrenes, the cobalt catalyst abstracts a H‐atom. Hydrogen evolution from the putative cobalt hydride intermediate allows a Heck‐like aroylation without the need for a stoichiometric oxidant. Mechanistic studies reveal that electronically different styrenes lead to a curved Hammett plot, thus suggesting a change in product‐determining step in the catalytic mechanism.more » « less
-
Abstract Fe‐based catalysts are an active, selective, and low‐cost option for tuning Fischer‐Tropsch synthesis (FTS) selectivity toward desirable light olefins. By encapsulating Fe within ZSM‐5, the resultant core‐shell catalysts have the potential to control the product distribution via secondary reactions that occur over the acid sites of the zeolite shell. In this paper, Fe is encapsulated within ZSM‐5 via the seed‐directed growth technique and characterized with a suite of analytical techniques including Mössbauer spectroscopy and X‐ray absorption fine structure (XAFS). Characterization of the core‐shell catalysts indicates that some of the Fe‐based active phase is destabilized during seed‐directed growth, demonstrating the challenges associated with encapsulating an Fe‐based active phase within zeolites. However, comparing FTS performance of the core‐shell catalyst with the Fe‐based control synthesized via incipient wetness impregnation demonstrates improved selectivity toward the desired C2‐C4olefins and C5+hydrocarbons.more » « less
-
Abstract While cobalt-based catalysts have been used in industrial Fischer-Tropsch synthesis for decades, little is known about how the dynamics of the Co-Co2C phase transformation drive their performance. Here we report on the occurrence of hysteresis effects in the Fischer-Tropsch reaction over potassium promoted Co/MnOxcatalyst. Both the reaction rate and the selectivity to chain-lengthened paraffins and terminally functionalized products (aldehydes, alcohols, olefins) show bistability when varying the hydrogen/carbon monoxide partial pressures back and forth from overall reducing to carbidizing conditions. While the carbon monoxide conversion and the selectivity to functionalized products follow clockwise hysteresis, the selectivity to paraffins shows counter-clockwise behavior. In situ X-ray diffraction demonstrates the activity/selectivity bistability to be driven by a Co-Co2C phase transformation. The conclusions are supported by High Resolution Transmission Electron Microscopy which identifies the Co-Co2C transformation, Mn5O8layered topologies at low H2/CO partial pressure ratios, and MnO at high such ratios.more » « less
-
In recent years, rising environmental concerns have led to the focus on some of the innovative alternative technologies to produce clean burning fuels. Fischer–Tropsch (FT) synthesis is one of the alternative chemical processes to produce synthetic fuels, which has a current research focus on reactor and catalyst improvements. In this work, a cobalt nanofilm (~4.5 nm), deposited by the atomic layer deposition (ALD) technique in a silicon microchannel microreactor (2.4 cm long × 50 µm wide × 100 µm deep), was used as a catalyst for atmospheric Fischer–Tropsch (FT) synthesis. The catalyst film was characterized by XPS, TEM-EDX, and AFM studies. The data from AFM and TEM clearly showed the presence of polygranular cobalt species on the silicon wafer. The XPS studies of as-deposited and reduced cobalt nanofilm in silicon microchannels showed a shift on the binding energies of Co 2p spin splits and confirmed the presence of cobalt in the Co0 chemical state for FT synthesis. The FT studies using the microchannel microreactor were carried out at two different temperatures, 240 °C and 220 °C, with a syngas (H2:CO) molar ratio of 2:1. The highest CO conversion of 74% was observed at 220 °C with the distribution of C1–C4 hydrocarbons. The results showed no significant selectivity towards butane at the higher temperature, 240 °C. The deactivation studies were performed at 220 °C for 60 h. The catalyst exhibited long-term stability, with only ~13% drop in the CO conversion at the end of 60 h. The deactivated cobalt film in the microchannels was investigated by XPS, showing a weak carbon peak in the XPS spectra.more » « less
An official website of the United States government

