Abstract The kinetics of organic reactions of different types in microvolumes (droplets, thin films, and sealed tubes) show effects of gas/solution interfacial area, reaction molecularity and solvent polarity. Partial solvation at the gas/solution interface is a major contributor to the 104‐fold reaction acceleration seen in bimolecular but not unimolecular reactions in microdroplets. Reaction acceleration can be used to manipulate selectivity by solvent choice.
more »
« less
Kinetic effects of molecular clustering and solvation by extended networks in zeolite acid catalysis
Reactions catalyzed within porous inorganic and organic materials and at electrochemical interfaces commonly occur at high coverage and in condensed media, causing turnover rates to depend strongly on interfacial structure and composition, collectively referred to as “solvent effects”. Transition state theory treatments define how solvation phenomena enter kinetic rate expressions, and identify two distinct types of solvent effects that originate from molecular clustering and from the solvation of such clusters by extended solvent networks. We review examples from the recent literature that investigate reactions within microporous zeolite catalysts to illustrate these concepts, and provide a critical appraisal of open questions in the field where future research can aid in developing new chemistry and catalyst design principles.
more »
« less
- Award ID(s):
- 1922173
- PAR ID:
- 10294650
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 12
- Issue:
- 13
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 4699 to 4708
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Although cyclic voltammetry (CV) measurements in solution have been widely used to determine the highest occupied molecular orbital energy (EHOMO) of semiconducting organic molecules, an understanding of the experimentally observed discrepancies due to the solvent used is lacking. To explain these differences, we investigate the solvent effects onEHOMOby combining density functional theory and molecular dynamics calculations for four donor molecules with a common backbone moiety. We compare the experimentalEHOMOvalues to the calculated values obtained from either implicit or first solvation shell theories. We find that the first solvation shell method can capture theEHOMOvariation arising from the functional groups in solution, unlike the implicit method. We further applied the first solvation shell method to other semiconducting organic molecules measured in solutions for different solvents. We find that theEHOMOobtained using an implicit method is insensitive to solvent choice. The first solvation shell, however, producesEHOMOvalues that are sensitive to solvent choices and agrees with published experimental results. The solvent sensitivity arises from a hierarchy of three effects: (1) the solute electronic state within a surrounding dielectric continuum, (2) ambient temperature or solvent atoms changing the solute geometry, and (3) electronic interactions between the solute and solvents. The implicit method, on the other hand, only captures the effect of a dielectric environment. Our findings suggest thatEHOMOobtained by CV measurements should account for the influence of solvent when the results are reported, interpreted, or compared to other molecules.more » « less
-
Abstract Variational implicit solvation models (VISMs) have gained extensive popularity in the molecular-level solvation analysis of biological systems due to their cost-effectiveness and satisfactory accuracy. Central in the construction of VISM is an interface separating the solute and the solvent. However, traditional sharp-interface VISMs fall short in adequately representing the inherent randomness of the solute–solvent interface, a consequence of thermodynamic fluctuations within the solute–solvent system. Given that experimentally observable quantities are ensemble averaged, the computation of the ensemble average solvation energy (EASE)–the averaged solvation energy across all thermodynamic microscopic states–emerges as a key metric for reflecting thermodynamic fluctuations during solvation processes. This study introduces a novel approach to calculating the EASE. We devise two diffuse-interface VISMs: one within the classic Poisson–Boltzmann (PB) framework and another within the framework of size-modified PB theory, accounting for the finite-size effects. The construction of these models relies on a new diffuse interface definition u\left(x), which represents the probability of a point xfound in the solute phase among all microstates. Drawing upon principles of statistical mechanics and geometric measure theory, we rigorously demonstrate that the proposed models effectively capture EASE during the solvation process. Moreover, preliminary analyses indicate that the size-modified EASE functional surpasses its counterpart based on the classic PB theory across various analytic aspects. Our work is the first step toward calculating EASE through the utilization of diffuse-interface VISM.more » « less
-
Fluoroether solvents are promising electrolyte candidates for high-energy-density lithium metal batteries, where high ionic conductivity and oxidative stability are important metrics for design of new systems. Recent experiments have shown that these performance metrics, particularly stability, can be tuned by changing the fraction of ether and fluorine content. However, little is known about how different molecular architectures influence the underlying ion transport mechanisms and conductivity. Here, we use all-atom molecular dynamics simulations to elucidate the ion transport and solvation characteristics of fluoroether chains of varying length, and having different ether segment and fluorine terminal group contents. The design rules that emerge from this effort are that solvent size determines lithium-ion transport kinetics, solvation structure, and solvation energy. In particular, the mechanism for lithium-ion transport is found to shift from ion hopping between solvation sites located in different fluoroether chains in short-chain solvents, to ion–solvent co-diffusion in long-chain solvents, indicating that an optimum exists for molecules of intermediate length, where hopping is possible but solvent diffusion is fast. Consistent with these findings, our experimental measurements reveal a non-monotonic behavior of the effects of solvent size on lithium-ion conductivity, with a maximum occurring for medium-length solvent chains. A key design principle for achieving high ionic conductivity is that a trade-off is required between relying on shorter fluoroether chains having high self-diffusivity, and relying on longer chains that increase the stability of local solvation shells.more » « less
-
Computational simulation of biomolecules can provide important insights into protein design, protein-ligand binding interactions, and ab initio biomolecular folding, among other applications. Accurate treatment of the solvent environment is essential in such applications, but the use of explicit solvents can add considerable cost. Implicit treatment of solvent effects using a dielectric continuum model is an attractive alternative to explicit solvation since it is able to describe solvation effects without the inclusion of solvent degrees of freedom. Previously, we described the development and parameterization of implicit solvent models for small molecules. Here, we extend the parameterization of the generalized Kirkwood (GK) implicit solvent model for use with biomolecules described by the AMOEBA force field via the addition of corrections to the calculation of effective radii that account for interstitial spaces that arise within biomolecules. These include element-specific pairwise descreening scale factors, a short-range neck contribution to describe the solvent-excluded space between pairs of nearby atoms, and finally tanh-based rescaling of the overall descreening integral. We then apply the AMOEBA/GK implicit solvent to a set of ten proteins and achieve an average coordinate root mean square deviation for the experimental structures of 2.0 Å across 500 ns simulations. Overall, the continued development of implicit solvent models will help facilitate the simulation of biomolecules on mechanistically relevant timescales.more » « less
An official website of the United States government

