- Award ID(s):
- 1839174
- NSF-PAR ID:
- 10294664
- Date Published:
- Journal Name:
- Nanophotonics
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2192-8606
- Page Range / eLocation ID:
- 393 to 401
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We use crystalline silicon (Si) antennas to efficiently extract broadband single-photon fluorescence from shallow nitrogen-vacancy (NV) centers in diamond into free space. Our design features relatively easy-to-pattern high-index Si resonators on the diamond surface to boost photon extraction by overcoming total internal reflection and Fresnel reflection at the diamond-air interface, and providing modest Purcell enhancement, without etching or otherwise damaging the diamond surface. In simulations, ~20 times more single photons are collected from a single NV center compared to the case without the antenna; in experiments, we observe an enhancement of ~4 times, limited by spatial alignment between the NV and the antenna. Our approach can be readily applied to other color centers in diamond, and more generally to the extraction of light from quantum emitters in wide-bandgap materials.more » « less
-
Abstract The nitrogen-vacancy (NV) color center in diamond has rapidly emerged as an important solid-state system for quantum information processing. Whereas individual spin registers have been used to implement small-scale diamond quantum computing, the realization of a large-scale device requires the development of an on-chip quantum bus for transporting information between distant qubits. Here, we propose a method for coherent quantum transport of an electron and its spin state between distant NV centers. Transport is achieved by the implementation of spatial stimulated adiabatic Raman passage through the optical control of the NV center charge states and the confined conduction states of a diamond nanostructure. Our models show that, for two NV centers in a diamond nanowire, high-fidelity transport can be achieved over distances of order hundreds of nanometers in timescales of order hundreds of nanoseconds. Spatial adiabatic passage is therefore a promising option for realizing an on-chip spin quantum bus.more » « less
-
Abstract Many advanced applications of diamond materials are now being limited by unknown surface defects, including in the fields of high power/frequency electronics and quantum computing and quantum sensing. Of acute interest to diamond researchers worldwide is the loss of quantum coherence in near‐surface nitrogen‐vacancy (NV) centers and the generation of associated magnetic noise at the diamond surface. Here for the first time is presented the observation of a family of primal diamond surface defects, which is suggested as the leading cause of band‐bending and Fermi‐pinning phenomena in diamond devices. A combination of density functional theory and synchrotron‐based X‐ray absorption spectroscopy is used to show that these defects introduce low‐lying electronic trap states. The effect of these states is modeled on band‐bending into the diamond bulk and it is shown that the properties of the important NV defect centers are affected by these defects. Due to the paramount importance of near‐surface NV center properties in a growing number of fields, the density of these defects is further quantified at the surface of a variety of differently‐treated device surfaces, consistent with best‐practice processing techniques in the literature. The identification and characterization of these defects has wide‐ranging implications for diamond devices across many fields.
-
Color centers in diamond are widely explored for applications in quantum sensing, computing, and networking. Their optical, spin, and charge properties have extensively been studied, while their interactions with itinerant carriers are relatively unexplored. Here, we show that NV centers situated 10 ± 5 nm of the diamond surface can be converted to the neutral charge state via hole capture. By measuring the hole capture rate, we extract the capture cross section, which is suppressed by proximity to the diamond surface. The distance dependence is consistent with a carrier diffusion model, indicating that the itinerant carrier lifetime can be long, even at the diamond surface. Measuring dynamics of near-surface NV centers offers a tool for characterizing the diamond surface and investigating charge transport in diamond devices.more » « less
-
Color-center–hosting semiconductors are emerging as promising source materials for low-field dynamic nuclear polarization (DNP) at or near room temperature, but hyperfine broadening, susceptibility to magnetic field heterogeneity, and nuclear spin relaxation induced by other paramagnetic defects set practical constraints difficult to circumvent. Here, we explore an alternate route to color-center–assisted DNP using nitrogen-vacancy (NV) centers in diamond coupled to substitutional nitrogen impurities, the so-called P1 centers. Working near the level anticrossing condition—where the P1 Zeeman splitting matches one of the NV spin transitions—we demonstrate efficient microwave-free 13 C DNP through the use of consecutive magnetic field sweeps and continuous optical excitation. The amplitude and sign of the polarization can be controlled by adjusting the low-to-high and high-to-low magnetic field sweep rates in each cycle so that one is much faster than the other. By comparing the 13 C DNP response for different crystal orientations, we show that the process is robust to magnetic field/NV misalignment, a feature that makes the present technique suitable to diamond powders and settings where the field is heterogeneous. Applications to shallow NVs could capitalize on the greater physical proximity between surface paramagnetic defects and outer nuclei to efficiently polarize target samples in contact with the diamond crystal.more » « less