Soft robots promise improved safety and capability over rigid robots when deployed near humans or in complex, delicate, and dynamic environments. However, infinite degrees of freedom and the potential for highly nonlinear dynamics severely complicate their modeling and control. Analytical and machine learning methodologies have been applied to model soft robots but with constraints: quasi-static motions, quasi-linear deflections, or both. Here, we advance the modeling and control of soft robots into the inertial, nonlinear regime. We controlled motions of a soft, continuum arm with velocities 10 times larger and accelerations 40 times larger than those of previous work and did so for high-deflection shapes with more than 110° of curvature. We leveraged a data-driven learning approach for modeling, based on Koopman operator theory, and we introduce the concept of the static Koopman operator as a pregain term in optimal control. Our approach is rapid, requiring less than 5 min of training; is computationally low cost, requiring as little as 0.5 s to build the model; and is design agnostic, learning and accurately controlling two morphologically different soft robots. This work advances rapid modeling and control for soft robots from the realm of quasi-static to inertial, laying the groundwork for the next generation of compliant and highly dynamic robots.
Modeling, Reduction, and Control of a Helically Actuated Inertial Soft Robotic Arm via the Koopman Operator
Soft robots promise improved safety and capabil- ity over rigid robots when deployed in complex, delicate, and dynamic environments. However the infinite degrees of freedom and highly nonlinear dynamics of these systems severely com- plicate their modeling and control. As a step toward addressing this open challenge, we apply the data-driven, Hankel Dynamic Mode Decomposition (HDMD) with time delay observables to the model identification of a highly inertial, helical soft robotic arm with a high number of underactuated degrees of freedom. The resulting model is linear and hence amenable to control via a Linear Quadratic Regulator (LQR). Using our test bed device, a dynamic, lightweight pneumatic fabric arm with an inertial mass at the tip, we show that the combination of HDMD and LQR allows us to command our robot to achieve arbitrary poses using only open loop control. We further show that Koopman spectral analysis gives us a dimensionally reduced basis of modes which decreases computational complexity without sacrificing predictive power.
more »
« less
- Award ID(s):
- 1935327
- NSF-PAR ID:
- 10294811
- Date Published:
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Because of the complex nature of soft robots, formulating dynamic models that are simple, efficient, and sufficiently accurate for simulation or control is a difficult task. This paper introduces an algorithm based on a recursive Newton-Euler (RNE) approach that enables an accurate and tractable lumped parameter dynamic model. This model scales linearly in computational complexity with the number of discrete segments. We validate this model by comparing it to actual hardware data from a three-joint continuum soft robot (with six degrees of freedom represented in a constant curvature kinematic model). The results show that this RNE-based model can be computed faster than real-time. We also show that with minimal system identification, a simulation performed using the dynamic model matches the real robot data with a median error of 3.15 degrees.more » « less
-
Underactuation is a core challenge associated with controlling soft and continuum robots, which possess theoretically infinite degrees of freedom, but few actuators. However, m actuators may still be used to control a dynamic soft robot in an m-dimensional output task space. In this paper we develop a task-space control approach for planar continuum robots that is robust to modeling error and requires very little sensor information. The controller is based on a highly underactuated discrete rod mechanics model in maximal coordinates and does not require conversion to a classical robot dynamics model form. This promotes straightforward control design, implementation and efficiency. We perform input-output feedback linearization on this model, apply sliding mode control to increase robustness, and formulate an observer to estimate the full state from sparse output measurements. Simulation results show exact task-space reference tracking behavior can be achieved even in the presence of significant modeling error, inaccurate initial conditions, and output-only sensing.more » « less
-
In nature, animals with soft body parts demonstrate remarkable control over their shape, such as an elephant trunk wrapping around a tree branch to pick it up. However, most research on robotic manipulators focuses on controlling the end effector, partly because the manipulator’s arm is rigidly articulated. With recent advances in soft robotics research, controlling a soft manipulator into many different shapes will significantly improve the robot’s functionality, such as medical robots morphing their shape to navigate the digestive system and deliver drugs to specific locations. However, controlling the shape of soft robots is challenging due to their highly nonlinear dynamics that are computationally intensive. In this paper, we leverage a physics-informed, data-driven approach using the Koopman operator to realize the shape control of soft robots. We simulate the dynamics of a soft manipulator using a physics-based simulator (PyElastica) to generate the input-output data, which is then used to identify an approximated linear model based on the Koopman operator. We then formulate the shapecontrol problem as a convex optimization problem that is computationally efficient. Our linear model is over 12 times faster than the physics-based model in simulating the manipulator’s motion. Further, we can control a soft manipulator into different shapes using model predictive control. We envision that the proposed method can be effectively used to control the shapes of soft robots to interact with uncertain environments or enable shape-morphing robots to fulfill diverse tasks.more » « less
-
Creating soft robots with sophisticated, autonomous capabilities requires these systems to possess reliable, on-line proprioception of 3D configuration through integrated soft sensors. We present a framework for predicting a soft robot’s 3D configuration via deep learning using feedback from a soft, proprioceptive sensor skin. Our framework introduces a kirigami-enabled strategy for rapidly sensorizing soft robots using off-the-shelf materials, a general kinematic description for soft robot geometry, and an investigation of neural network designs for predicting soft robot configuration. Even with hysteretic, non-monotonic feedback from the piezoresistive sensors, recurrent neural networks show potential for predicting our new kinematic parameters and, thus, the robot’s configuration. One trained neural network closely predicts steady-state configuration during operation, though complete dynamic behavior is not fully captured. We validate our methods on a trunk-like arm with 12 discrete actuators and 12 proprioceptive sensors. As an essential advance in soft robotic perception, we anticipate our framework will open new avenues towards closed loop control in soft robotics.more » « less