skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Clustering Augmented Self-Supervised Learning: An Application to Land Cover Mapping
Collecting large annotated datasets in Remote Sensing is often expensive and thus can become a major obstacle for training advanced machine learning models. Common techniques of addressing this issue, based on the underlying idea of pre-training the Deep Neural Networks (DNN) on freely available large datasets, cannot be used for Remote Sensing due to the unavailability of such large-scale labeled datasets and the heterogeneity of data sources caused by the varying spatial and spectral resolution of different sensors. Self-supervised learning is an alternative approach that learns feature representation from unlabeled images without using any human annotations. In this paper, we introduce a new method for land cover mapping by using a clustering-based pretext task for self-supervised learning. We demonstrate the effectiveness of the method on two societally relevant applications from the aspect of segmentation performance, discriminative feature representation learning, and the underlying cluster structure. We also show the effectiveness of the active sampling using the clusters obtained from our method in improving the mapping accuracy given a limited budget of annotating.  more » « less
Award ID(s):
1838159
PAR ID:
10294945
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
DEEPSPATIA 2021: 2nd ACM SIGKDD Workshop on Deep Learning for Spatiotemporal Data, Applications, and Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Manually annotating complex scene point cloud datasets is both costly and error-prone. To reduce the reliance on labeled data, we propose a snapshot-based self-supervised method to enable direct feature learning on the unlabeled point cloud of a complex 3D scene. A snapshot is defined as a collection of points sampled from the point cloud scene. It could be a real view of a local 3D scan directly captured from the real scene, or a virtual view of such from a large 3D point cloud dataset. First the snapshots go through a self-supervised pipeline including both part contrasting and snapshot clustering for feature learning. Then a weakly-supervised approach is implemented by training a standard SVM classifier on the learned features with a small fraction of labeled data. We evaluate the weakly-supervised approach for point cloud classification by using varying numbers of labeled data and study the minimal numbers of labeled data for a successful classification. Experiments are conducted on three public point cloud datasets, and the results have shown that our method is capable of learning effective features from the complex scene data without any labels. 
    more » « less
  2. null (Ed.)
    Supervised learning method requires a large volume of annotated datasets. Collecting such datasets is time-consuming and expensive. Until now, very few annotated COVID19 imaging datasets are available. Although self-supervised learning enables us to bootstrap the training by exploiting unlabeled data, the generic self-supervised methods for natural images do not sufficiently incorporate the context. For medical images, a desirable method should be sensitive enough to detect deviation from normal-appearing tissue of each anatomical region; here, anatomy is the context. We introduce a novel approach with two levels of self-supervised representation learning objectives: one on the regional anatomical level and another on the patient level. We use graph neural networks to incorporate the relationship between different anatomical regions. The structure of the graph is informed by anatomical correspondences between each patient and an anatomical atlas. In addition, the graph representation has the advantage of handling any arbitrarily sized image in full resolution. Experiments on large-scale Computer Tomography (CT) datasets of lung images show that our approach compares favorably to baseline methods that do not account for the context. We use the learned embedding to quantify the clinical progression of COVID-19 and show that our method generalizes well to COVID-19 patients from different hospitals. Qualitative results suggest that our model can identify clinically relevant regions in the images. 
    more » « less
  3. We introduce a self-supervised method for learning visual correspondence from unlabeled video. The main idea is to use cycle-consistency in time as free supervisory signal for learning visual representations from scratch. At training time, our model optimizes a spatial feature representation to be useful for performing cycle-consistent tracking. At test time, we use the acquired representation to find nearest neighbors across space and time. We demonstrate the generalizability of the representation across a range of visual correspondence tasks, including video object segmentation, keypoint tracking, and optical flow. Our approach outperforms previous self-supervised methods and performs competitively with strongly supervised methods. Overall, we find that the learned representation generalizes surprisingly well, despite being trained only on indoor videos and without fine-tuning. 
    more » « less
  4. Avidan, S. (Ed.)
    Despite the success of fully-supervised human skeleton sequence modeling, utilizing self-supervised pre-training for skeleton sequence representation learning has been an active field because acquiring task-specific skeleton annotations at large scales is difficult. Recent studies focus on learning video-level temporal and discriminative information using contrastive learning, but overlook the hierarchical spatial-temporal nature of human skeletons. Different from such superficial supervision at the video level, we propose a self-supervised hierarchical pre-training scheme incorporated into a hierarchical Transformer-based skeleton sequence encoder (Hi-TRS), to explicitly capture spatial, short-term, and long-term temporal dependencies at frame, clip, and video levels, respectively. To evaluate the proposed self-supervised pre-training scheme with Hi-TRS, we conduct extensive experiments covering three skeleton-based downstream tasks including action recognition, action detection, and motion prediction. Under both supervised and semi-supervised evaluation protocols, our method achieves the state-of-the-art performance. Additionally, we demonstrate that the prior knowledge learned by our model in the pre-training stage has strong transfer capability for different downstream tasks. 
    more » « less
  5. Semantic segmentation algorithms, such as UNet, that rely on convolutional neural network (CNN)-based architectures, due to their ability to capture local textures and spatial context, have shown promise for anthropogenic geomorphic feature extraction when using land surface parameters (LSPs) derived from digital terrain models (DTMs) as input predictor variables. However, the operationalization of these supervised classification methods is limited by a lack of large volumes of quality training data. This study explores the use of transfer learning, where information learned from another, and often much larger, dataset is used to potentially reduce the need for a large, problem-specific training dataset. Two anthropogenic geomorphic feature extraction problems are explored: the extraction of agricultural terraces and the mapping of surface coal mine reclamation-related valley fill faces. Light detection and ranging (LiDAR)-derived DTMs were used to generate LSPs. We developed custom transfer parameters by attempting to predict geomorphon-based landforms using a large dataset of digital terrain data provided by the United States Geological Survey’s 3D Elevation Program (3DEP). We also explored the use of pre-trained ImageNet parameters and initializing models using parameters learned from the other mapping task investigated. The geomorphon-based transfer learning resulted in the poorest performance while the ImageNet-based parameters generally improved performance in comparison to a random parameter initialization, even when the encoder was frozen or not trained. Transfer learning between the different geomorphic datasets offered minimal benefits. We suggest that pre-trained models developed using large, image-based datasets may be of value for anthropogenic geomorphic feature extraction from LSPs even given the data and task disparities. More specifically, ImageNet-based parameters should be considered as an initialization state for the encoder component of semantic segmentation architectures applied to anthropogenic geomorphic feature extraction even when using non-RGB image-based predictor variables, such as LSPs. The value of transfer learning between the different geomorphic mapping tasks may have been limited due to smaller sample sizes, which highlights the need for continued research in using unsupervised and semi-supervised learning methods, especially given the large volume of digital terrain data available, despite the lack of associated labels. 
    more » « less