skip to main content


Title: Computational Techniques for Investigating Information Theoretic Limits of Information Systems
Computer-aided methods, based on the entropic linear program framework, have been shown to be effective in assisting the study of information theoretic fundamental limits of information systems. One key element that significantly impacts their computation efficiency and applicability is the reduction of variables, based on problem-specific symmetry and dependence relations. In this work, we propose using the disjoint-set data structure to algorithmically identify the reduction mapping, instead of relying on exhaustive enumeration in the equivalence classification. Based on this reduced linear program, we consider four techniques to investigate the fundamental limits of information systems: (1) computing an outer bound for a given linear combination of information measures and providing the values of information measures at the optimal solution; (2) efficiently computing a polytope tradeoff outer bound between two information quantities; (3) producing a proof (as a weighted sum of known information inequalities) for a computed outer bound; and (4) providing the range for information quantities between which the optimal value does not change, i.e., sensitivity analysis. A toolbox, with an efficient JSON format input frontend, and either Gurobi or Cplex as the linear program solving engine, is implemented and open-sourced.  more » « less
Award ID(s):
1816546 1816518
NSF-PAR ID:
10295061
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Information
Volume:
12
Issue:
2
ISSN:
2078-2489
Page Range / eLocation ID:
82
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In statistical inference, the information-theoretic performance limits can often be expressed in terms of a statistical divergence between the underlying statistical models (e.g., in binary hypothesis testing, the error probability is related to the total variation distance between the statistical models). As the data dimension grows, computing the statistics involved in decision-making and the attendant performance limits (divergence measures) face complexity and stability challenges. Dimensionality reduction addresses these challenges at the expense of compromising the performance (the divergence reduces by the data-processing inequality). This paper considers linear dimensionality reduction such that the divergence between the models is maximally preserved. Specifically, this paper focuses on Gaussian models where we investigate discriminant analysis under five f-divergence measures (Kullback–Leibler, symmetrized Kullback–Leibler, Hellinger, total variation, and χ2). We characterize the optimal design of the linear transformation of the data onto a lower-dimensional subspace for zero-mean Gaussian models and employ numerical algorithms to find the design for general Gaussian models with non-zero means. There are two key observations for zero-mean Gaussian models. First, projections are not necessarily along the largest modes of the covariance matrix of the data, and, in some situations, they can even be along the smallest modes. Secondly, under specific regimes, the optimal design of subspace projection is identical under all the f-divergence measures considered, rendering a degree of universality to the design, independent of the inference problem of interest. 
    more » « less
  2. In mechanism design, the firm has an advantage over its customers in its knowledge of the state of the system, which can affect the utilities of all players. This poses the question: how can the firm utilize that information (and not additional financial incentives) to persuade customers to take actions that lead to higher revenue (or other firm utility)? When the firm is constrained to "cheap talk," and cannot credibly commit to a manner of signaling, the firm cannot change customer behavior in a meaningful way. Instead, we allow firm to commit to how they will signal in advance. Customers can then trust the signals they receive and act on their realization. This thesis contains the work of three papers, each of which applies information design to service systems and online markets. We begin by examining how a firm could signal a queue's length to arriving, impatient customers in a service system. We show that the choice of an optimal signaling mechanism can be written as a infinite linear program and then show an intuitive form for its optimal solution. We show that with the optimal fixed price and optimal signaling, a firm can generate the same revenue as it could with an observable queue and length-dependent variable prices. Next, we study demand and inventory signaling in online markets: customers make strategic purchasing decisions, knowing the price will decrease if an item does not sell out. The firm aims to convince customers to buy now at a higher price. We show that the optimal signaling mechanism is public, and sends all customers the same information. Finally, we consider customers whose ex ante utility is not simply their expected ex post utility, but instead a function of its distribution. We bound the number of signals needed for the firm to generate their optimal utility and provide a convex program reduction of the firm's problem. 
    more » « less
  3. Offline reinforcement learning, which seeks to utilize offline/historical data to optimize sequential decision-making strategies, has gained surging prominence in recent studies. Due to the advantage that appropriate function approximators can help mitigate the sample complexity burden in modern reinforcement learning problems, existing endeavors usually enforce powerful function representation models (e.g. neural networks) to learn the optimal policies. However, a precise understanding of the statistical limits with function representations, remains elusive, even when such a representation is linear. Towards this goal, we study the statistical limits of offline reinforcement learning with linear model representations. To derive the tight offline learning bound, we design the variance-aware pessimistic value iteration (VAPVI), which adopts the conditional variance information of the value function for time-inhomogeneous episodic linear Markov decision processes (MDPs). VAPVI leverages estimated variances of the value functions to reweight the Bellman residuals in the least-square pessimistic value iteration and provides improved offline learning bounds over the best-known existing results (whereas the Bellman residuals are equally weighted by design). More importantly, our learning bounds are expressed in terms of system quantities, which provide natural instance-dependent characterizations that previous results are short of. We hope our results draw a clearer picture of what offline learning should look like when linear representations are provided. 
    more » « less
  4. We consider the periodic review dynamic pricing and inventory control problem with fixed ordering cost. Demand is random and price dependent, and unsatisfied demand is backlogged. With complete demand information, the celebrated [Formula: see text] policy is proved to be optimal, where s and S are the reorder point and order-up-to level for ordering strategy, and [Formula: see text], a function of on-hand inventory level, characterizes the pricing strategy. In this paper, we consider incomplete demand information and develop online learning algorithms whose average profit approaches that of the optimal [Formula: see text] with a tight [Formula: see text] regret rate. A number of salient features differentiate our work from the existing online learning researches in the operations management (OM) literature. First, computing the optimal [Formula: see text] policy requires solving a dynamic programming (DP) over multiple periods involving unknown quantities, which is different from the majority of learning problems in OM that only require solving single-period optimization questions. It is hence challenging to establish stability results through DP recursions, which we accomplish by proving uniform convergence of the profit-to-go function. The necessity of analyzing action-dependent state transition over multiple periods resembles the reinforcement learning question, considerably more difficult than existing bandit learning algorithms. Second, the pricing function [Formula: see text] is of infinite dimension, and approaching it is much more challenging than approaching a finite number of parameters as seen in existing researches. The demand-price relationship is estimated based on upper confidence bound, but the confidence interval cannot be explicitly calculated due to the complexity of the DP recursion. Finally, because of the multiperiod nature of [Formula: see text] policies the actual distribution of the randomness in demand plays an important role in determining the optimal pricing strategy [Formula: see text], which is unknown to the learner a priori. In this paper, the demand randomness is approximated by an empirical distribution constructed using dependent samples, and a novel Wasserstein metric-based argument is employed to prove convergence of the empirical distribution. This paper was accepted by J. George Shanthikumar, big data analytics. 
    more » « less
  5. Recent advances in fundamental performance limits for power quantities based on Lagrange duality are proving to be a powerful theoretical tool for understanding electromagnetic wave phenomena. To date, however, in any approach seeking to enforce a high degree of physical reality, the linearity of the wave equation plays a critical role. In this manuscript, we generalize the current quadratically constrained quadratic program framework for evaluating linear photonics limits to incorporate nonlinear processes under the undepleted pump approximation. Via the exemplary objective of enhancing second harmonic generation in a (free-form) wavelength-scale structure, we illustrate a model constraint scheme that can be used in conjunction with standard convex relaxations to bound performance in the presence of nonlinear dynamics. Representative bounds are found to anticipate features observed in optimized structures discovered via computational inverse design. The formulation can be straightforwardly modified to treat other frequency-conversion processes, including Raman scattering and four-wave mixing.

     
    more » « less