skip to main content


Title: Bayesian optimization of functional output in inverse problems
Motivated by the parameter identification problem of a reaction-diffusion transport model in a vapor phase infiltration processes, we propose a Bayesian optimization procedure for solving the inverse problem that aims to find an input setting that achieves a desired functional output. The proposed algorithm improves over the standard single-objective Bayesian optimization by (i) utilizing the generalized chi-square distribution as a more appropriate predictive distribution for the squared distance objective function in the inverse problems, and (ii) applying functional principal component analysis to reduce the dimensionality of the functional response data, which allows for efficient approximation of the predictive distribution and the subsequent computation of the expected improvement acquisition function.  more » « less
Award ID(s):
1921873
NSF-PAR ID:
10295068
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Optimization and Engineering
ISSN:
1389-4420
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we develop an optimal weight adap- tation strategy of model predictive control (MPC) for connected and automated vehicles (CAVs) in mixed traffic. We model the interaction between a CAV and a human-driven vehicle (HDV) as a simultaneous game and formulate a game-theoretic MPC problem to find a Nash equilibrium of the game. In the MPC problem, the weights in the HDV’s objective function can be learned online using moving horizon inverse reinforcement learning. Using Bayesian optimization, we propose a strategy to optimally adapt the weights in the CAV’s objective function so that the expected true cost when using MPC in simulations can be minimized. We validate the effectiveness of the optimal strategy by numerical simulations of a vehicle crossing example at an unsignalized intersection. 
    more » « less
  2. We consider the problem of inferring the conditional independence graph (CIG) of a high-dimensional stationary multivariate Gaussian time series. A sparse-group lasso-based frequency-domain formulation of the problem has been considered in the literature where the objective is to estimate the sparse inverse power spectral density (PSD) of the data via optimization of a sparse-group lasso based penalized log-likelihood cost function that is formulated in the frequency-domain. The CIG is then inferred from the estimated inverse PSD. Optimization in the previous approach was performed using an alternating minimization (AM) approach whose performance depends upon choice of a penalty parameter. In this paper we investigate an alternating direction method of multipliers (ADMM) approach for optimization to mitigate dependence on the penalty parameter. We also investigate selection of the tuning parameters based on Bayesian information criterion, and illustrate our approach using synthetic and real data. Comparisons with the "usual" i.i.d. modeling of time series for graph estimation are also provided. 
    more » « less
  3. SUMMARY

    We introduce a new finite-element (FE) based computational framework to solve forward and inverse elastic deformation problems for earthquake faulting via the adjoint method. Based on two advanced computational libraries, FEniCS and hIPPYlib for the forward and inverse problems, respectively, this framework is flexible, transparent and easily extensible. We represent a fault discontinuity through a mixed FE elasticity formulation, which approximates the stress with higher order accuracy and exposes the prescribed slip explicitly in the variational form without using conventional split node and decomposition discrete approaches. This also allows the first order optimality condition, that is the vanishing of the gradient, to be expressed in continuous form, which leads to consistent discretizations of all field variables, including the slip. We show comparisons with the standard, pure displacement formulation and a model containing an in-plane mode II crack, whose slip is prescribed via the split node technique. We demonstrate the potential of this new computational framework by performing a linear coseismic slip inversion through adjoint-based optimization methods, without requiring computation of elastic Green’s functions. Specifically, we consider a penalized least squares formulation, which in a Bayesian setting—under the assumption of Gaussian noise and prior—reflects the negative log of the posterior distribution. The comparison of the inversion results with a standard, linear inverse theory approach based on Okada’s solutions shows analogous results. Preliminary uncertainties are estimated via eigenvalue analysis of the Hessian of the penalized least squares objective function. Our implementation is fully open-source and Jupyter notebooks to reproduce our results are provided. The extension to a fully Bayesian framework for detailed uncertainty quantification and non-linear inversions, including for heterogeneous media earthquake problems, will be analysed in a forthcoming paper.

     
    more » « less
  4. Abstract

    We propose a novel method for sampling and optimization tasks based on a stochastic interacting particle system. We explain how this method can be used for the following two goals: (i) generating approximate samples from a given target distribution and (ii) optimizing a given objective function. The approach is derivative‐free and affine invariant, and is therefore well‐suited for solving inverse problems defined by complex forward models: (i) allows generation of samples from the Bayesian posterior and (ii) allows determination of the maximum a posteriori estimator. We investigate the properties of the proposed family of methods in terms of various parameter choices, both analytically and by means of numerical simulations. The analysis and numerical simulation establish that the method has potential for general purpose optimization tasks over Euclidean space; contraction properties of the algorithm are established under suitable conditions, and computational experiments demonstrate wide basins of attraction for various specific problems. The analysis and experiments also demonstrate the potential for the sampling methodology in regimes in which the target distribution is unimodal and close to Gaussian; indeed we prove that the method recovers a Laplace approximation to the measure in certain parametric regimes and provide numerical evidence that this Laplace approximation attracts a large set of initial conditions in a number of examples.

     
    more » « less
  5. Abstract Obtaining lightweight and accurate approximations of discretized objective functional Hessians in inverse problems governed by partial differential equations (PDEs) is essential to make both deterministic and Bayesian statistical large-scale inverse problems computationally tractable. The cubic computational complexity of dense linear algebraic tasks, such as Cholesky factorization, that provide a means to sample Gaussian distributions and determine solutions of Newton linear systems is a computational bottleneck at large-scale. These tasks can be reduced to log-linear complexity by utilizing hierarchical off-diagonal low-rank (HODLR) matrix approximations. In this work, we show that a class of Hessians that arise from inverse problems governed by PDEs are well approximated by the HODLR matrix format. In particular, we study inverse problems governed by PDEs that model the instantaneous viscous flow of ice sheets. In these problems, we seek a spatially distributed basal sliding parameter field such that the flow predicted by the ice sheet model is consistent with ice sheet surface velocity observations. We demonstrate the use of HODLR Hessian approximation to efficiently sample the Laplace approximation of the posterior distribution with covariance further approximated by HODLR matrix compression. Computational studies are performed which illustrate ice sheet problem regimes for which the Gauss–Newton data-misfit Hessian is more efficiently approximated by the HODLR matrix format than the low-rank (LR) format. We then demonstrate that HODLR approximations can be favorable, when compared to global LR approximations, for large-scale problems by studying the data-misfit Hessian associated with inverse problems governed by the first-order Stokes flow model on the Humboldt glacier and Greenland ice sheet. 
    more » « less