In this paper, we develop an optimal weight adap- tation strategy of model predictive control (MPC) for connected and automated vehicles (CAVs) in mixed traffic. We model the interaction between a CAV and a human-driven vehicle (HDV) as a simultaneous game and formulate a game-theoretic MPC problem to find a Nash equilibrium of the game. In the MPC problem, the weights in the HDV’s objective function can be learned online using moving horizon inverse reinforcement learning. Using Bayesian optimization, we propose a strategy to optimally adapt the weights in the CAV’s objective function so that the expected true cost when using MPC in simulations can be minimized. We validate the effectiveness of the optimal strategy by numerical simulations of a vehicle crossing example at an unsignalized intersection.
more »
« less
Bayesian optimization of functional output in inverse problems
Motivated by the parameter identification problem of a reaction-diffusion transport model in a vapor phase infiltration processes, we propose a Bayesian optimization procedure for solving the inverse problem that aims to find an input setting that achieves a desired functional output. The proposed algorithm improves over the standard single-objective Bayesian optimization by (i) utilizing the generalized chi-square distribution as a more appropriate predictive distribution for the squared distance objective function in the inverse problems, and (ii) applying functional principal component analysis to reduce the dimensionality of the functional response data, which allows for efficient approximation of the predictive distribution and the subsequent computation of the expected improvement acquisition function.
more »
« less
- Award ID(s):
- 1921873
- NSF-PAR ID:
- 10295068
- Date Published:
- Journal Name:
- Optimization and Engineering
- ISSN:
- 1389-4420
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Randomized algorithms exploit stochasticity to reduce computational complexity. One important example is random feature regression (RFR) that accelerates Gaussian process regression (GPR). RFR approximates an unknown function with a random neural network whose hidden weights and biases are sampled from a probability distribution. Only the final output layer is fit to data. In randomized algorithms like RFR, the hyperparameters that characterize the sampling distribution greatly impact performance, yet are not directly accessible from samples. This makes optimization of hyperparameters via standard (gradient-based) optimization tools inapplicable. Inspired by Bayesian ideas from GPR, this paper introduces a random objective function that is tailored for hyperparameter tuning of vector-valued random features. The objective is minimized with ensemble Kalman inversion (EKI). EKI is a gradient-free particle-based optimizer that is scalable to highdimensions and robust to randomness in objective functions. A numerical study showcases the new black-box methodology to learn hyperparameter distributions in several problems that are sensitive to the hyperparameter selection: two global sensitivity analyses, integrating a chaotic dynamical system, and solving a Bayesian inverse problem from atmospheric dynamics. The success of the proposed EKI-based algorithm for RFR suggests its potential for automated optimization of hyperparameters arising in other randomized algorithms.more » « less
-
Bayesian optimization is a class of global optimization techniques. In Bayesian optimization, the underlying objective function is modeled as a realization of a Gaussian process. Although the Gaussian process assumption implies a random distribution of the Bayesian optimization outputs, quantification of this uncertainty is rarely studied in the literature. In this work, we propose a novel approach to assess the output uncertainty of Bayesian optimization algorithms, which proceeds by constructing confidence regions of the maximum point (or value) of the objective function. These regions can be computed efficiently, and their confidence levels are guaranteed by the uniform error bounds for sequential Gaussian process regression newly developed in the present work. Our theory provides a unified uncertainty quantification framework for all existing sequential sampling policies and stopping criteria.more » « less
-
null (Ed.)Seismic full-waveform inversion aims to reconstruct subsurface medium parameters from recorded seismic data. It is solved as a constrained optimization problem in the deterministic approach. Many different objective functions have been proposed to tackle the nonconvexity that originated from the cycle-skipping issues. The analogy between objective functions in the deterministic inversion and likelihood functions in Bayesian inversion motivates us to analyze the noise model each objective function accounts for under the Bayesian inference setting. We also show the existence and wellposedness of their corresponding posterior measures. In particular, the theorem shows that theWasserstein-type likelihood offers better stability with respect to the noise in the recorded data. Together with an application of the level-set prior, we demonstrate by numerical examples the successful reconstruction from Bayesian full-waveform inversion under the proper choices of the likelihood function and the prior distribution.more » « less
-
We consider the problem of inferring the conditional independence graph (CIG) of a high-dimensional stationary multivariate Gaussian time series. A sparse-group lasso-based frequency-domain formulation of the problem has been considered in the literature where the objective is to estimate the sparse inverse power spectral density (PSD) of the data via optimization of a sparse-group lasso based penalized log-likelihood cost function that is formulated in the frequency-domain. The CIG is then inferred from the estimated inverse PSD. Optimization in the previous approach was performed using an alternating minimization (AM) approach whose performance depends upon choice of a penalty parameter. In this paper we investigate an alternating direction method of multipliers (ADMM) approach for optimization to mitigate dependence on the penalty parameter. We also investigate selection of the tuning parameters based on Bayesian information criterion, and illustrate our approach using synthetic and real data. Comparisons with the "usual" i.i.d. modeling of time series for graph estimation are also provided.more » « less