In this on-going research, we propose a blockchain-based solution that facilitates a scalable and secured inter-healthcare EHRs exchange. These healthcare systems maintain their records on separate blockchain networks and are independent of each other. The proposed architecture can detect and prevent malicious activities on both stored and shared EHRs from either outsider or insider threats. It can also verify the integrity and consistency of EHR requests and replies from other healthcare systems and presents them in a standard format that can be easily understood by different healthcare nodes. In the preliminary result, we evaluate the security analysis against frequently encounter outsider and insider threats within a healthcare system. The result shows that the architecture detects and prevents outsider threats from uploading compromising EHRs into the blockchain and also prevents unauthorized retrieval of patient's information
more »
« less
Secure Architecture for Inter-Healthcare Electronic Health Records Exchange
The increase in cyberattacks against the healthcare system, notably Electronic Health Records (EHRs) breaches, has cost the healthcare providers more in recent years. This situation is predicted to increase in the coming years as the healthcare systems are proposing a consortium EHRs repository. Due to this reason, it is crucial to deploy solutions that can ensure the security of shared health records. More specifically, maintaining the integrity and consistency of shared EHRs becomes pertinent. In this on-going research, we propose a blockchain-based solution that facilitates a scalable and secured inter-healthcare EHRs exchange. These healthcare systems maintain their records on individual private blockchain networks, and the blockchains interact to exchange patient health history based on request. The proposed solution verifies the integrity and consistency of requests and replies from other healthcare systems. It presents them in a standard format that can be easily understood by different healthcare nodes. The verification steps guard against malicious activities on both stored and in transit EHRs from insider and outsider threat actors. We evaluate the security analysis against frequently encounter outsider and insider threats within a healthcare system. The preliminary result shows that the architecture can detect and prevent threat actors from uploading compromising EHRs into the network and prevents unauthorized retrieval of patient's information.
more »
« less
- Award ID(s):
- 2029295
- PAR ID:
- 10295100
- Date Published:
- Journal Name:
- IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Patient health records(PHRs) are crucial and sensitive as they contain essential information and are frequently shared among healthcare entities. This information must remain correct, up to date, private and accessible only to the authorized entities. Moreover, access must also be assured during health emergency crises such as the recent outbreak, which represents the greatest test of the flexibility and the efficiency of PHR sharing among healthcare providers, which ended up an immense interruption to the healthcare industry. Moreover, the right to privacy is the most fundamental right for a patient. Hence, the patient health records in the healthcare sector have faced issues with privacy breaches, insider outside attacks, and unauthorized access to crucial patients’ records. As a result, it pushes more patients to demand more control, security, and a smoother experience when they want to access their health records. Furthermore, the lack of interoperability among the healthcare system and providers and the added weight of cyber-attacks on an already overwhelmed system have called for an immediate solution. In this work, we developed a secured blockchain framework that safeguards patients’ full control over their health data which can be stored in their private IPFS and later shared with an authorized provider. Furthermore, the system ensures privacy and security while handling patient data, which can only be shared with the patients. The proposed Security and privacy analysis show promising results in providing time savings, enhanced confidentiality, and less disruption in patient-provider interactions.more » « less
-
null (Ed.)Blockchain technology has recently gained high popularity in data security, primarily to mitigate against data breach and manipulation. Since its inception in 2008, it has been applied in different areas mainly to maintain data integrity and consistency. Blockchain has been tailored to secure data due to its data immutability and distributive technology. Despite the high success rate in data security, the inability to identify compromised insider nodes is one of the significant problems encountered in blockchain architectures. A Blockchain network is made up of nodes that initiate, verify and validate transactions. If compromised, these nodes can manipulate submitted transactions, inject fake transactions, or retrieve unauthorized information that might eventually compromise the stored data's integrity and consistency. This paper proposes a novel method of detecting these compromised blockchain nodes using a server-side authentication process and thwart their activities before getting updated in the blockchain ledger. In evaluating the proposed system, we perform four common insider attacks, which fall under the following three categories: (1)Those attacks targeting the Blockchain to bring it down. (2) the attacks that attempt to inject fake data into the database. (3) The attacks that attempt to hijack or retrieve unauthorized data. We described how we implement the attacks and how our architecture detects them before they impact the network. Finally, we displayed the attack detection time for each attack and compared our approach with other existing methods.more » « less
-
Despite the increased accuracy of intrusion detection systems (IDS) in identifying cyberattacks in computer networks and devices connected to the internet, distributed or coordinated attacks can still go undetected or not detected on time. The single vantage point limits the ability of these IDSs to detect such attacks. Due to this reason, there is a need for attack characteristics’ exchange among different IDS nodes. Researchers proposed a cooperative intrusion detection system to share these attack characteristics effectively. This approach was useful; however, the security of the shared data cannot be guaranteed. More specifically, maintaining the integrity and consistency of shared data becomes a significant concern. In this paper, we propose a blockchain-based solution that ensures the integrity and consistency of attack characteristics shared in a cooperative intrusion detection system. The proposed architecture achieves this by detecting and preventing fake features injection and compromised IDS nodes. It also facilitates scalable attack features exchange among IDS nodes, ensures heterogeneous IDS nodes participation, and it is robust to public IDS nodes joining and leaving the network. We evaluate the security analysis and latency. The result shows that the proposed approach detects and prevents compromised IDS nodes, malicious features injection, manipulation, or deletion, and it is also scalable with low latency.more » « less
-
Electronic Health Records (EHRs) have become increasingly popular in recent years, providing a convenient way to store, manage and share relevant information among healthcare providers. However, as EHRs contain sensitive personal information, ensuring their security and privacy is most important. This paper reviews the key aspects of EHR security and privacy, including authentication, access control, data encryption, auditing, and risk management. Additionally, the paper dis- cusses the legal and ethical issues surrounding EHRs, such as patient consent, data ownership, and breaches of confidentiality. Effective implementation of security and privacy measures in EHR systems requires a multi-disciplinary approach involving healthcare providers, IT specialists, and regulatory bodies. Ultimately, the goal is to come upon a balance between protecting patient privacy and ensuring timely access to critical medical information for feature healthcare delivery.more » « less
An official website of the United States government

