skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Life-Cycle Decisions for Biomedical Data: The Challenge of Forecasting Costs
Biomedical research results in the collection and storage of increasingly large and complex data sets. Preserving those data so that they are discoverable, accessible, and interpretable accelerates scientific discovery and improves health outcomes, but requires that researchers, data curators, and data archivists consider the long-term disposition of data and the costs of preserving, archiving, and promoting access to them. Life Cycle Decisions for Biomedical Data examines and assesses approaches and considerations for forecasting costs for preserving, archiving, and promoting access to biomedical research data. This report provides a comprehensive conceptual framework for cost-effective decision making that encourages data accessibility and reuse for researchers, data managers, data archivists, data scientists, and institutions that support platforms that enable biomedical research data preservation, discoverability, and use.  more » « less
Award ID(s):
1820527
PAR ID:
10295200
Author(s) / Creator(s):
Date Published:
Journal Name:
Publications listing National Academy of Sciences National Academy of Engineering Institute of Medicine National Research Council
ISSN:
0276-0533
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Biomedical research data sets are becoming larger and more complex, and computing capabilities are expanding to enable transformative scientific results. The National Institutes of Health's (NIH's) National Library of Medicine (NLM) has the unique role of ensuring that biomedical research data are findable, accessible, interoperable, and reusable in an ethical manner. Tools that forecast the costs of long-term data preservation could be useful as the cost to curate and manage these data in meaningful ways continues to increase, as could stewardship to assess and maintain data that have future value. The National Academies of Sciences, Engineering, and Medicine convened a workshop on July 11-12, 2019 to gather insight and information in order to develop and demonstrate a framework for forecasting long-term costs for preserving, archiving, and accessing biomedical data. Presenters and attendees discussed tools and practices that NLM could use to help researchers and funders better integrate risk management practices and considerations into data preservation, archiving, and accessing decisions; methods to encourage NIH-funded researchers to consider, update, and track lifetime data; and burdens on the academic researchers and industry staff to implement these tools, methods, and practices. This publication summarizes the presentations and discussion of the workshop. 
    more » « less
  2. Coral reefs are declining worldwide primarily because of bleaching and subsequent mortality resulting from thermal stress. Currently, extensive efforts to engage in more holistic research and restoration endeavors have considerably expanded the techniques applied to examine coral samples. Despite such advances, coral bleaching and restoration studies are often conducted within a specific disciplinary focus, where specimens are collected, preserved, and archived in ways that are not always conducive to further downstream analyses by specialists in other disciplines. This approach may prevent the full utilization of unexpended specimens, leading to siloed research, duplicative efforts, unnecessary loss of additional corals to research endeavors, and overall increased costs. A recent US National Science Foundation-sponsored workshop set out to consolidate our collective knowledge across the disciplines of Omics, Physiology, and Microscopy and Imaging regarding the methods used for coral sample collection, preservation, and archiving. Here, we highlight knowledge gaps and propose some simple steps for collecting, preserving, and archiving coral-bleaching specimens that can increase the impact of individual coral bleaching and restoration studies, as well as foster additional analyses and future discoveries through collaboration. Rapid freezing of samples in liquid nitrogen or placing at −80 °C to −20 °C is optimal for most Omics and Physiology studies with a few exceptions; however, freezing samples removes the potential for many Microscopy and Imaging-based analyses due to the alteration of tissue integrity during freezing. For Microscopy and Imaging, samples are best stored in aldehydes. The use of sterile gloves and receptacles during collection supports the downstream analysis of host-associated bacterial and viral communities which are particularly germane to disease and restoration efforts. Across all disciplines, the use of aseptic techniques during collection, preservation, and archiving maximizes the research potential of coral specimens and allows for the greatest number of possible downstream analyses. 
    more » « less
  3. As data management and sharing policies have expanded in the federal and private funding spheres, the costs to support institutions and researchers in meeting these expenses for services and infrastructure are not fully understood. A number of higher education organizations are conducting research and developing tactics for cost assessments of infrastructure and services distributed within institutions. This panel will present a snapshot of work recently started at the Federal Demonstration Partnership (FDP), the Council of Government Relations (COGR), and the Association of Research Libraries (ARL) to investigate where public access to research data costs are incurred at an institution, with the goal of assisting universities in defining a strategy for planning for those costs. 
    more » « less
  4. With the proliferation of Beyond 5G (B5G) communication systems and heterogeneous networks, mobile broadband users are generating massive volumes of data that undergo fast processing and computing to obtain actionable insights. While analyzing this huge amount of data typically involves machine and deep learning-based data-driven Artificial Intelligence (AI) models, a key challenge arises in terms of providing privacy assurances for user-generated data. Even though data-driven techniques have been widely utilized for network traffic analysis and other network management tasks, researchers have also identified that applying AI techniques may often lead to severe privacy concerns. Therefore, the concept of privacy-preserving data-driven learning models has recently emerged as a hot area of research to facilitate model training on large-scale datasets while guaranteeing privacy along with the security of the data. In this paper, we first demonstrate the research gap in this domain, followed by a tutorial-oriented review of data-driven models, which can be potentially mapped to privacy-preserving techniques. Then, we provide preliminaries of a number of privacy-preserving techniques (e.g., differential privacy, functional encryption, Homomorphic encryption, secure multi-party computation, and federated learning) that can be potentially adopted for emerging communication networks. The provided preliminaries enable us to showcase the subset of data-driven privacy-preserving models, which are gaining traction in emerging communication network systems. We provide a number of relevant networking use cases, ranging from the B5G core and Radio Access Networks (RANs) to semantic communications, adopting privacy-preserving data-driven models. Based on the lessons learned from the pertinent use cases, we also identify several open research challenges and hint toward possible solutions. 
    more » « less
  5. Abstract: Rowasu'u is a digital archives project that seeks to reunite A'uwẽ-Xavante individuals with researcher produced documentation of their ancestors, families, bodies, culture, and homelands and eventually provide a platform for the collection and preservation of community knowledge. A'uwẽ-Xavante have a long history of receiving academic researchers including anthropologists, geneticists, biomedical researchers, ecologists, and linguists, but they have had limited access to the documentation and other data produced through these encounters. The Rowasu'u project is working with scholars to compile and make accessible records of more than 60 years of decentralized academic research while partnering with A'uwẽ-Xavante communities historically positioned as the most prominent participants. Our larger aspiration is that in addition to supporting A'uwẽ-Xavante efforts to reclaim their history as recorded by scientists, Rowasu'u will advance Indigenous research governance and data sovereignty as human rights applicable to past as well as future research. This chapter discusses our early progress in developing Rowasu'u using Mukurtu CMS, including the challenges and complexities inherent in navigating local politics in the context of generations of marginalization and exclusion. 
    more » « less