The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.
Explore Research Products in the PAR It may take a few hours for recently added research products to appear in PAR search results.
Title: A Sparse Coding Approach to Automatic Diet Monitoring with Continuous Glucose Monitors
Measuring dietary intake is a major challenge in the management of chronic diseases. Current methods rely on self-report measures, which are cumbersome to obtain and often unreliable. This article presents an approach to estimate dietary intake automatically by analyzing the post-prandial glucose response (PPGR) of a meal, as measured with continuous glucose monitors. In particular, we propose a sparse-coding technique that can be used to estimate the amounts of macronutrients (carbohydrates, protein, fat) in a meal from the meal’s PPGR. We use Lasso regularization to represent the PPGR of a new meal as a sparse combination of PPGRs in a dictionary, then combine the sparse weights with the macronutrient amounts in the dictionary’s meals to estimate the macronutrients in the new meal. We evaluate the approach on a dataset containing nine standardized meals and their corresponding PPGRs, consumed by fifteen participants. The proposed technique consistently outperforms two baseline systems based on ridge regression and nearest-neighbors, in terms of correlation and normalized root mean square error of the predictions. more »« less
Sajjadi, Seyedhooman; Das, Anurag; Gutierrez-Osuna, Ricardo; Chaspari, Theodora; Paromita, Projna; Ruebush, Laura E.; Deutz, Nicolaas E.; Mortazavi, Bobak J.
(, ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP))
null
(Ed.)
Diet monitoring is an important component of interventions in type 2 diabetes, but is time intensive and often inaccurate. To address this issue, we describe an approach to monitor diet automatically, by analyzing fluctuations in glucose after a meal is consumed. In particular, we evaluate three standardization techniques (baseline correction, feature normalization, and model personalization) that can be used to compensate for the large individual differences that exist in food metabolism. Then, we build machine learning models to predict the amounts of macronutrients in a meal from the associated glucose responses. We evaluate the approach on a dataset containing glucose responses for 15 participants who consumed 9 meals. Three techniques improve the accuracy of the models: subtracting the baseline glucose, performing z-score normalization, and scaling the amount of macronutrients by each individuals’ body mass index.
Mortazavi, Bobak J.; Gutierrez-Osuna, Ricardo
(, Journal of Diabetes Science and Technology)
null
(Ed.)
This article provides an up-to-date review of technological advances in 3 key areas related to diet monitoring and precision nutrition. First, we review developments in mobile applications, with a focus on food photography and artificial intelligence to facilitate the process of diet monitoring. Second, we review advances in 2 types of wearable and handheld sensors that can potentially be used to fully automate certain aspects of diet logging: physical sensors to detect moments of dietary intake, and chemical sensors to estimate the composition of diets and meals. Finally, we review new programs that can generate personalized/precision nutrition recommendations based on measurements of gut microbiota and continuous glucose monitors with artificial intelligence. The article concludes with a discussion of potential pitfalls of some of these technologies.
Wu, Yuxing; Miller, Andrew D; Chung, Chia-Fang; Kaziunas, Elizabeth
(, Proceedings of the ACM on Human-Computer Interaction)
Meals are a central (and messy) part of family life. Previous design framings for mealtime technologies have focused on supporting dietary needs or social and celebratory interactions at the dinner table; however, family meals involve the coordination of many activities and complicated family dynamics. In this paper, we report on findings from interviews and design sessions with 18 families from the Midwestern United States (including both partners/parents and children) to uncover important family differences and tensions that arise around domestic meal experiences. Drawing on feminist theory, we unpack the work of feeding a family as a form of care, drawing attention to the social and emotional complexity of family meals. Critically situating our data within current design narratives, we propose the sensitizing concepts of generative and systemic discontents as a productive way towards troubling the design space of family-food interaction to contend with the struggles that are a part of everyday family meal experiences.
Chun, Elizabeth; Gaynanova, Irina; Melanson, Edward L.; Lyden, Kate
(, Journal for the Measurement of Physical Behaviour)
Introduction: Reducing sedentary time is associated with improved postprandial glucose regulation. However, it is not known if the timing of sedentary behavior (i.e., pre- vs. postmeal) differentially impacts postprandial glucose in older adults with overweight or obesity.Methods: In this secondary analysis, older adults (≥65 years) with overweight and obesity (body mass index ≥ 25 kg/m2) wore a continuous glucose monitor and a sedentary behavior monitor continuously in their real-world environments for four consecutive days on four separate occasions. Throughout each 4-day measurement period, participants followed a standardized eucaloric diet and recorded mealtimes in a diary. Glucose, sedentary behavior, and meal intake data were fused using sensor and diary timestamps. Mixed-effect linear regression models were used to evaluate the impact of sedentary timing relative to meal intake.Results: Premeal sedentary time was significantly associated with both the increase from premeal glucose to the postmeal peak (ΔG) and the percent of premeal glucose increase that was recovered 1-hr postmeal glucose peak (%Baseline Recovery;p < .05), with higher levels of premeal sedentary time leading to both a larger ΔGand a smaller %Baseline Recovery. Postmeal sedentary time was significantly associated with the time from meal intake to glucose peak (ΔT;p < .05), with higher levels of postmeal sedentary time leading to a longer time to peak.Conclusions: Pre- versus postmeal sedentary behavior differentially impacts postprandial glucose response in older adults with overweight or obesity, suggesting that the timing of sedentary behavior reductions might play an influential role on long-term glycemic control.
BackgroundChronic diseases such as heart disease, stroke, diabetes, and hypertension are major global health challenges. Healthy eating can help people with chronic diseases manage their condition and prevent complications. However, making healthy meal plans is not easy, as it requires the consideration of various factors such as health concerns, nutritional requirements, tastes, economic status, and time limits. Therefore, there is a need for effective, affordable, and personalized meal planning that can assist people in choosing food that suits their individual needs and preferences. ObjectiveThis study aimed to design an artificial intelligence (AI)–powered meal planner that can generate personalized healthy meal plans based on the user’s specific health conditions, personal preferences, and status. MethodsWe proposed a system that integrates semantic reasoning, fuzzy logic, heuristic search, and multicriteria analysis to produce flexible, optimized meal plans based on the user’s health concerns, nutrition needs, as well as food restrictions or constraints, along with other personal preferences. Specifically, we constructed an ontology-based knowledge base to model knowledge about food and nutrition. We defined semantic rules to represent dietary guidelines for different health concerns and built a fuzzy membership of food nutrition based on the experience of experts to handle vague and uncertain nutritional data. We applied a semantic rule-based filtering mechanism to filter out food that violate mandatory health guidelines and constraints, such as allergies and religion. We designed a novel, heuristic search method that identifies the best meals among several candidates and evaluates them based on their fuzzy nutritional score. To select nutritious meals that also satisfy the user’s other preferences, we proposed a multicriteria decision-making approach. ResultsWe implemented a mobile app prototype system and evaluated its effectiveness through a use case study and user study. The results showed that the system generated healthy and personalized meal plans that considered the user’s health concerns, optimized nutrition values, respected dietary restrictions and constraints, and met the user’s preferences. The users were generally satisfied with the system and its features. ConclusionsWe designed an AI-powered meal planner that helps people create healthy and personalized meal plans based on their health conditions, preferences, and status. Our system uses multiple techniques to create optimized meal plans that consider multiple factors that affect food choice. Our evaluation tests confirmed the usability and feasibility of the proposed system. However, some limitations such as the lack of dynamic and real-time updates should be addressed in future studies. This study contributes to the development of AI-powered personalized meal planning systems that can support people’s health and nutrition goals.
Das, Anurag, Sajjadi, Seyedhooman, Mortazavi, Bobak, Chaspari, Theodora, Paromita, Projna, Ruebush, Laura, Deutz, Nicolaas, and Gutierrez-Osuna, Ricardo.
"A Sparse Coding Approach to Automatic Diet Monitoring with Continuous Glucose Monitors". ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (). Country unknown/Code not available. https://doi.org/10.1109/ICASSP39728.2021.9414452.https://par.nsf.gov/biblio/10295237.
@article{osti_10295237,
place = {Country unknown/Code not available},
title = {A Sparse Coding Approach to Automatic Diet Monitoring with Continuous Glucose Monitors},
url = {https://par.nsf.gov/biblio/10295237},
DOI = {10.1109/ICASSP39728.2021.9414452},
abstractNote = {Measuring dietary intake is a major challenge in the management of chronic diseases. Current methods rely on self-report measures, which are cumbersome to obtain and often unreliable. This article presents an approach to estimate dietary intake automatically by analyzing the post-prandial glucose response (PPGR) of a meal, as measured with continuous glucose monitors. In particular, we propose a sparse-coding technique that can be used to estimate the amounts of macronutrients (carbohydrates, protein, fat) in a meal from the meal’s PPGR. We use Lasso regularization to represent the PPGR of a new meal as a sparse combination of PPGRs in a dictionary, then combine the sparse weights with the macronutrient amounts in the dictionary’s meals to estimate the macronutrients in the new meal. We evaluate the approach on a dataset containing nine standardized meals and their corresponding PPGRs, consumed by fifteen participants. The proposed technique consistently outperforms two baseline systems based on ridge regression and nearest-neighbors, in terms of correlation and normalized root mean square error of the predictions.},
journal = {ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)},
author = {Das, Anurag and Sajjadi, Seyedhooman and Mortazavi, Bobak and Chaspari, Theodora and Paromita, Projna and Ruebush, Laura and Deutz, Nicolaas and Gutierrez-Osuna, Ricardo},
editor = {null}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.