skip to main content

Title: A Call for Data-Driven Networks to Address Equity in the Context of Undergraduate Biology
National efforts to improve equitable teaching practices in biology education have led to an increase in research on the barriers to student participation and performance, as well as solutions for overcoming these barriers. Fewer studies have examined the extent to which the resulting data trends and effective strategies are generalizable across multiple contexts or are specific to individual classrooms, institutions, or geographic regions. To address gaps in our understanding, as well as to establish baseline information about students across contexts, a working group associated with a research coordination network (Equity and Diversity in Undergraduate STEM, EDU-STEM) convened in Las Vegas, Nevada, in November of 2019. We addressed the following objectives: 1) characterize the present state of equity and diversity in undergraduate biology education research; 2) address the value of a network of educators focused on science, technology, engineering, and mathematics equity; 3) summarize the status of data collection and results; 4) identify and prioritize questions and interventions for future collaboration; and 5) construct a recruitment plan that will further the efforts of the EDU-STEM research coordination network. The report that follows is a summary of the conclusions and future directions from our discussion.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Editors:
Barnard, Daron
Award ID(s):
1919462
Publication Date:
NSF-PAR ID:
10295307
Journal Name:
CBE—Life Sciences Education
Volume:
19
Issue:
4
Page Range or eLocation-ID:
mr2
ISSN:
1931-7913
Sponsoring Org:
National Science Foundation
More Like this
  1. Price, Rebecca (Ed.)
    To enhance equity and diversity in undergraduate biology, recent research in biology education focuses on best practices that reduce learning barriers for all students and improve academic performance. However, the majority of current research into student experiences in introductory biology takes place at large, predominantly White institutions. To foster contextual knowledge in biology education research, we harnessed data from a large research coordination network to examine the extent of academic performance gaps based on demographic status across institutional contexts and how two psychological factors, test anxiety and ethnicity stigma consciousness, may mediate performance in introductory biology. We used data from seven institutions across three institution types: 2-year community colleges, 4-year inclusive institutions (based on admissions selectivity; hereafter, inclusive), and 4-year selective institutions (hereafter, selective). In our sample, we did not observe binary gender gaps across institutional contexts, but found that performance gaps based on underrepresented minority status were evident at inclusive and selective 4-year institutions, but not at community colleges. Differences in social psychological factors and their impacts on academic performance varied substantially across institutional contexts. Our findings demonstrate that institutional context can play an important role in the mechanisms underlying performance gaps.
  2. The Inclusive Environments and Metrics in Biology Education and Research (iEMBER) network is a newly forming national community of practice that engages diversity, equity, and inclusion stakeholders in interdisciplinary collaborative projects. iEMBER was initiated with incubator funding from the National Science Foundation program for Research Coordination Networks in Undergraduate Biology Education. In June 2017, biology education researchers, social scientists, biologists, and program and policy administrators, all with interests in diversity, equity, and inclusion, met to lay the foundation for the iEMBER network. iEMBER provides a distinct forum to coordinate efforts through networking, professional development, and the initiation of collaborative research. iEMBER advances science, technology, engineering, and mathematics reform focused on diversity, equity, and inclusion through the initiation of research teams at the iEMBER biennial conference and outreach efforts at discipline-specific meetings and conferences. The focus of iEMBER is on understanding how to create inclusive, supportive, and engaging environments to foster the success of all biology students and trainees. This report focuses on the structure of the iEMBER network, two takeaways that emerged from the 2017 conference (interdisciplinary networking/collaboration and intradisciplinary broadening participation strategies), and ways for prospective members to engage in ongoing dialogue and future events. Learn more at http://iember.orgmore ».« less
  3. null (Ed.)
    In 2016, 10 universities launched a Networked Improvement Community (NIC) aimed at increasing the number of scholars from Alliances for Graduate Education and the Professoriate (AGEP) populations entering science, technology, engineering, and mathematics (STEM) faculty careers. NICs bring together stakeholders focused on a common goal to accelerate innovation through structured, ongoing intervention development, implementation, and refinement. We theorized a NIC organizational structure would aid understandings of a complex problem in different contexts and accelerate opportunities to develop and improve interventions to address the problem. A distinctive feature of this NIC is its diverse institutional composition of public and private, predominantly white institutions, a historically Black university, a Hispanic-serving institution, and land grant institutions located across eight states and Washington, DC, United States. NIC members hold different positions within their institutions and have access to varied levers of change. Among the many lessons learned through this community case study, analyzing and addressing failed strategies is as equally important to a healthy NIC as is sharing learning from successful interventions. We initially relied on pre-existing relationships and assumptions about how we would work together, rather than making explicit how the NIC would develop, establish norms, understand common processes, and manage changing relationships.more »We had varied understandings of the depth of campus differences, sometimes resulting in frustrations about the disparate progress on goals. NIC structures require significant engagement with the group, often more intensive than traditional multi-institution organizational structures. They require time to develop and ongoing maintenance in order to advance the work. We continue to reevaluate our model for leadership, climate, diversity, conflict resolution, engagement, decision-making, roles, and data, leading to increased investment in the success of all NIC institutions. Our NIC has evolved from the traditional NIC model to become the Center for the Integration of Research, Teaching and Learning (CIRTL) AGEP NIC model with five key characteristics: (1) A well-specified aim, (2) An understanding of systems, including a variety of contexts and different organizations, (3) A culture and practice of shared leadership and inclusivity, (4) The use of data reflecting different institutional contexts, and (5) The ability to accelerate infrastructure and interventions. We conclude with recommendations for those considering developing a NIC to promote diversity, equity, and inclusion efforts.« less
  4. In recent years, studies in engineering education have begun to intentionally integrate disability into discussions of diversity, inclusion, and equity. To broaden and advocate for the participation of this group in engineering, researchers have identified a variety of factors that have kept people with disabilities at the margins of the field. Such factors include the underrepresentation of disabled individuals within research and industry; systemic and personal barriers, and sociocultural expectations within and beyond engineering education-related contexts. These findings provide a foundational understanding of the external and environmental influences that can shape how students with disabilities experience higher education, develop a sense of belonging, and ultimately form professional identities as engineers. Prior work examining the intersections of disability identity and professional identity is limited, with little to no studies examining the ways in which students conceptualize, define, and interpret disability as a category of identity during their undergraduate engineering experience. This lack of research poses problems for recruitment, retention, and inclusion, particularly as existing studies have shown that the ways in which students perceive and define themselves in relation to their college major is crucial for the development of a professional engineering identity. Further, due to variation in defining ‘disability’ acrossmore »national agencies (e.g., the National Institutes of Health, and the Department of Justice) and disability communities (with different models of disability), the term “disability” is broad and often misunderstood, frequently referring to a group of individuals with a wide range of conditions and experiences. Therefore, the purpose of this study is to gain deeper insights into the ways students define disability and disability identity within their own contexts as they develop professional identities. Specifically, we ask the following research question: How do students describe and conceptualize non-apparent disabilities? To answer this research question, we draw from emergent findings from an on-going grounded theory exploration of professional identity formation of undergraduate civil engineering students with disabilities. In this paper, we focus our discussion on the grounded theory analyses of 4 semi-structured interviews with participants who have disclosed a non-apparent disability. Study participants consist of students currently enrolled in undergraduate civil engineering programs, students who were initially enrolled in undergraduate civil engineering programs and transferred to another major, and students who have recently graduated from a civil engineering program within the past year. Sensitizing concepts emerged as findings from the initial grounded theory analysis to guide and initiate our inquiry: 1) the medical model of disability, 2) the social model of disability, and 3) personal experience. First, medical models of disability position physical, cognitive, and developmental difference as a “sickness” or “condition” that must be “treated”. From this perspective, disability is perceived as an impairment that must be accommodated so that individuals can obtain a dominantly-accepted sense of normality. An example of medical models within the education context include accommodations procedures in which students must obtain an official diagnosis in order to access tools necessary for academic success. Second, social models of disability position disability as a dynamic and fluid identity that consists of a variety of physical, cognitive, or developmental differences. Dissenting from assumptions of normality and the focus on individual bodily conditions (hallmarks of the medical model), the social model focuses on the political and social structures that inherently create or construct disability. An example of a social model within the education context includes the universal design of materials and tools that are accessible to all students within a given course. In these instances, students are not required to request accommodations and may, consequently, bypass medical diagnoses. Lastly, participants referred to their own life experiences as a way to define, describe, and consider disability. Fernando considers his stutter to be a disability because he is often interrupted, spoken over, or silenced when engaging with others. In turn, he is perceived as unintelligent and unfit to be a civil engineer by his peers. In contrast, David, who identifies as autistic, does not consider himself to be disabled. These experiences highlight the complex intersections of medical and social models of disability and their contextual influences as participants navigate their lives. While these sensitizing concepts are not meant to scope the research, they provide a useful lens for initiating research and provides markers on which a deeper, emergent analysis is expanded. Findings from this work will be used to further explore the professional identity formation of undergraduate civil engineering students with disabilities. These findings will provide engineering education researchers and practitioners with insights regarding the ways individuals with disabilities interpret their in- and out-of-classroom experiences and navigate their disability identities. For higher education, broadly, this work aims to reinforce the complex and diverse nature of disability experience and identity, particularly as it relates to accommodations and accessibility within the classroom, and expand the inclusiveness of our programs and institutions.« less
  5. Synopsis The modern field of biology has its roots in the curiosity and skill of amateur researchers and has never been purely the domain of professionals. Today, professionals and amateurs contribute to biology research, working both together and independently. Well-targeted and holistic investment in amateur biology research could bring a range of benefits that, in addition to positive societal benefits, may help to address the considerable challenges facing our planet in the 21st century. We highlight how recent advances in amateur biology have been facilitated by innovations in digital infrastructure as well as the development of community biology laboratories, launched over the last decade, and we provide recommendations for how individuals can support the integration of amateurs into biology research. The benefits of investment in amateur biology research could be many-fold, however, without a clear consideration of equity, efforts to promote amateur biology could exacerbate structural inequalities around access to and benefits from STEM. The future of the field of biology relies on integrating a diversity of perspectives and approaches—amateur biology researchers have an important role to play.