We consider synthesis and analysis of probability measures using the entropy-regularized Wasserstein-2 cost and its unbiased version, the Sinkhorn divergence. The synthesis problem consists of computing the barycenter, with respect to these costs, of m reference measures given a set of coefficients belonging to the m-dimensional simplex. The analysis problem consists of finding the coefficients for the closest barycenter in the Wasserstein-2 distance to a given measure μ. Under the weakest assumptions on the measures thus far in the literature, we compute the derivative of the entropy-regularized Wasserstein-2 cost. We leverage this to establish a characterization of regularized barycenters as solutions to a fixed-point equation for the average of the entropic maps from the barycenter to the reference measures. This characterization yields a finite-dimensional, convex, quadratic program for solving the analysis problem when μ is a barycenter. It is shown that these coordinates, as well as the value of the barycenter functional, can be estimated from samples with dimension-independent rates of convergence, a hallmark of entropy-regularized optimal transport, and we verify these rates experimentally. We also establish that barycentric coordinates are stable with respect to perturbations in the Wasserstein-2 metric, suggesting a robustness of these coefficients to corruptions. We employ the barycentric coefficients as features for classification of corrupted point cloud data, and show that compared to neural network baselines, our approach is more efficient in small training data regimes.
more »
« less
Scalable Computations of Wasserstein Barycenter via Input Convex Neural Networks
Wasserstein Barycenter is a principled approach to represent the weighted mean of a given set of probability distributions, utilizing the geometry induced by optimal transport. In this work, we present a novel scalable algorithm to approximate the Wasserstein Barycenters aiming at highdimensional applications in machine learning. Our proposed algorithm is based on the Kantorovich dual formulation of the Wasserstein-2 distance as well as a recent neural network architecture, input convex neural network, that is known to parametrize convex functions. The distinguishing features of our method are: i) it only requires samples from the marginal distributions; ii) unlike the existing approaches, it represents the Barycenter with a generative model and can thus generate infinite samples from the barycenter without querying the marginal distributions; iii) it works similar to Generative Adversarial Model in one marginal case. We demonstrate the efficacy of our algorithm by comparing it with the state-of-art methods in multiple experiments.
more »
« less
- PAR ID:
- 10295317
- Date Published:
- Journal Name:
- Proceedings of Machine Learning Research
- Volume:
- 139
- ISSN:
- 2640-3498
- Page Range / eLocation ID:
- 1571-1581
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The optimal transport barycenter (a.k.a. Wasserstein barycenter) is a fundamental notion of averaging that extends from the Euclidean space to the Wasserstein space of probability distributions. Computation of the unregularized barycenter for discretized probability distributions on point clouds is a challenging task when the domain dimension d>1. Most practical algorithms for approximating the barycenter problem are based on entropic regularization. In this paper, we introduce a nearly linear time O(mlogm) and linear space complexity O(m) primal-dual algorithm, the Wasserstein-Descent ℍ˙1-Ascent (WDHA) algorithm, for computing the exact barycenter when the input probability density functions are discretized on an m-point grid. The key success of the WDHA algorithm hinges on alternating between two different yet closely related Wasserstein and Sobolev optimization geometries for the primal barycenter and dual Kantorovich potential subproblems. Under reasonable assumptions, we establish the convergence rate and iteration complexity of WDHA to its stationary point when the step size is appropriately chosen. Superior computational efficacy, scalability, and accuracy over the existing Sinkhorn-type algorithms are demonstrated on high-resolution (e.g., 1024×1024 images) 2D synthetic and real data.more » « less
-
Optimal transport has emerged as a powerful tool for a variety of problems in machine learning, and it is frequently used to enforce distributional constraints. In this context, existing methods often use either a Wasserstein metric, or else they apply concurrent barycenter approaches when more than two distributions are considered. In this paper, we leverage multi-marginal optimal transport (MMOT), where we take advantage of a procedure that computes a generalized earth mover’s distance as a sub-routine. We show that not only is our algorithm computationally more efficient compared to other barycentric-based distance methods, but it has the additional advantage that gradients used for backpropagation can be efficiently computed during the forward pass computation itself, which leads to substantially faster model training. We provide technical details about this new regularization term and its properties, and we present experimental demonstrations of faster runtimes when compared to standard Wasserstein-style methods. Finally, on a range of experiments designed to assess effectiveness at enforcing fairness, we demonstrate our method compares well with alternatives.more » « less
-
Abstract One key challenge encountered in single-cell data clustering is to combine clustering results of data sets acquired from multiple sources. We propose to represent the clustering result of each data set by a Gaussian mixture model (GMM) and produce an integrated result based on the notion of Wasserstein barycenter. However, the precise barycenter of GMMs, a distribution on the same sample space, is computationally infeasible to solve. Importantly, the barycenter of GMMs may not be a GMM containing a reasonable number of components. We thus propose to use the minimized aggregated Wasserstein (MAW) distance to approximate the Wasserstein metric and develop a new algorithm for computing the barycenter of GMMs under MAW. Recent theoretical advances further justify using the MAW distance as an approximation for the Wasserstein metric between GMMs. We also prove that the MAW barycenter of GMMs has the same expectation as the Wasserstein barycenter. Our proposed algorithm for clustering integration scales well with the data dimension and the number of mixture components, with complexity independent of data size. We demonstrate that the new method achieves better clustering results on several single-cell RNA-seq data sets than some other popular methods.more » « less
-
We give a new algorithm for learning a two-layer neural network under a general class of input distributions. Assuming there is a ground-truth two-layer network y = Aσ(Wx) + ξ, where A,W are weight matrices, ξ represents noise, and the number of neurons in the hidden layer is no larger than the input or output, our algorithm is guaranteed to recover the parameters A,W of the ground-truth network. The only requirement on the input x is that it is symmetric, which still allows highly complicated and structured input. Our algorithm is based on the method-of-moments framework and extends several results in tensor decompositions. We use spectral algorithms to avoid the complicated non-convex optimization in learning neural networks. Experiments show that our algorithm can robustly learn the ground-truth neural network with a small number of samples for many symmetric input distributions.more » « less
An official website of the United States government

