skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generative adversarial networks for scintillation signal simulation in EXO-200
Abstract Generative Adversarial Networks trained on samples of simulated or actual events have been proposed as a way of generating large simulated datasets at a reduced computational cost. In this work, a novel approach to perform the simulation of photodetector signals from the time projection chamber of the EXO-200 experiment is demonstrated. The method is based on a Wasserstein Generative Adversarial Network — a deep learning technique allowing for implicit non-parametric estimation of the population distribution for a given set of objects. Our network is trained on real calibration data using raw scintillation waveforms as input. We find that it is able to produce high-quality simulated waveforms an order of magnitude faster than the traditional simulation approach and, importantly, generalize from the training sample and discern salient high-level features of the data. In particular, the network correctly deduces position dependency of scintillation light response in the detector and correctly recognizes dead photodetector channels. The network output is then integrated into the EXO-200 analysis framework to show that the standard EXO-200 reconstruction routine processes the simulated waveforms to produce energy distributions comparable to that of real waveforms. Finally, the remaining discrepancies and potential ways to improve the approach further are highlighted.  more » « less
Award ID(s):
2111213 2011948
PAR ID:
10436300
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Journal of Instrumentation
Volume:
18
Issue:
06
ISSN:
1748-0221
Page Range / eLocation ID:
P06005
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The availability of large datasets is crucial for the development of new power system applications and tools; unfortunately, very few are publicly and freely available. The authors designed an end‐to‐end generative framework for the creation of synthetic bus‐level time‐series load data for transmission networks. The model is trained on a real dataset of over 70 Terabytes of synchrophasor measurements spanning multiple years. Leveraging a combination of principal component analysis and conditional generative adversarial network models, the developed scheme allows for the generation of data at varying sampling rates (up to a maximum of 30 samples per second) and ranging in length from seconds to years. The generative models are tested extensively to verify that they correctly capture the diverse characteristics of real loads. Finally, an opensource tool called LoadGAN is developed which gives researchers access to the fully trained generative models via a graphical interface. 
    more » « less
  2. null (Ed.)
    Ultrasound B-Mode images are created from data obtained from each element in the transducer array in a process called beamforming. The beamforming goal is to enhance signals from specified spatial locations, while reducing signal from all other locations. On clinical systems, beamforming is accomplished with the delay-and-sum (DAS) algorithm. DAS is efficient but fails in patients with high noise levels, so various adaptive beamformers have been proposed. Recently, deep learning methods have been developed for this task. With deep learning methods, beamforming is typically framed as a regression problem, where clean, ground-truth data is known, and usually simulated. For in vivo data, however, it is extremely difficult to collect ground truth information, and deep networks trained on simulated data underperform when applied to in vivo data, due to domain shift between simulated and in vivo data. In this work, we show how to correct for domain shift by learning deep network beamformers that leverage both simulated data, and unlabeled in vivo data, via a novel domain adaption scheme. A challenge in our scenario is that domain shift exists both for noisy input, and clean output. We address this challenge by extending cycle-consistent generative adversarial networks, where we leverage maps between synthetic simulation and real in vivo domains to ensure that the learned beamformers capture the distribution of both noisy and clean in vivo data. We obtain consistent in vivo image quality improvements compared to existing beamforming techniques, when applying our approach to simulated anechoic cysts and in vivo liver data. 
    more » « less
  3. In this paper, we present a simple approach to train Generative Adversarial Networks (GANs) in order to avoid a mode collapse issue. Implicit models such as GANs tend to generate better samples compared to explicit models that are trained on tractable data likelihood. However, GANs overlook the explicit data density characteristics which leads to undesirable quantitative evaluations and mode collapse. To bridge this gap, we propose a hybrid generative adversarial network (HGAN) for which we can enforce data density estimation via an autoregressive model and support both adversarial and likelihood framework in a joint training manner which diversify the estimated density in order to cover different modes. We propose to use an adversarial network to transfer knowledge from an autoregressive model (teacher) to the generator (student) of a GAN model. A novel deep architecture within the GAN formulation is developed to adversarially distill the autoregressive model information in addition to simple GAN training approach. We conduct extensive experiments on real-world datasets (i.e., MNIST, CIFAR-10, STL-10) to demonstrate the effectiveness of the proposed HGAN under qualitative and quantitative evaluations. The experimental results show the superiority and competitiveness of our method compared to the baselines. 
    more » « less
  4. Relevance to proposal: This project evaluates the generalizability of real and synthetic training datasets which can be used to train model-free techniques for multi-agent applications. We evaluate different methods of generating training corpora and machine learning techniques including Behavior Cloning and Generative Adversarial Imitation Learning. Our results indicate that the utility-guided selection of representative scenarios to generate synthetic data can have significant improvements on model performance. Paper abstract: Crowd simulation, the study of the movement of multiple agents in complex environments, presents a unique application domain for machine learning. One challenge in crowd simulation is to imitate the movement of expert agents in highly dense crowds. An imitation model could substitute an expert agent if the model behaves as good as the expert. This will bring many exciting applications. However, we believe no prior studies have considered the critical question of how training data and training methods affect imitators when these models are applied to novel scenarios. In this work, a general imitation model is represented by applying either the Behavior Cloning (BC) training method or a more sophisticated Generative Adversarial Imitation Learning (GAIL) method, on three typical types of data domains: standard benchmarks for evaluating crowd models, random sampling of state-action pairs, and egocentric scenarios that capture local interactions. Simulated results suggest that (i) simpler training methods are overall better than more complex training methods, (ii) training samples with diverse agent-agent and agent-obstacle interactions are beneficial for reducing collisions when the trained models are applied to new scenarios. We additionally evaluated our models in their ability to imitate real world crowd trajectories observed from surveillance videos. Our findings indicate that models trained on representative scenarios generalize to new, unseen situations observed in real human crowds. 
    more » « less
  5. null (Ed.)
    Speech enhancement techniques that use a generative adversarial network (GAN) can effectively suppress noise while allowing models to be trained end-to-end. However, such techniques directly operate on time-domain waveforms, which are often highly-dimensional and require extensive computation. This paper proposes a novel GAN-based speech enhancement method, referred to as S-ForkGAN, that operates on log-power spectra rather than on time-domain speech waveforms, and uses a forked GAN structure to extract both speech and noise information. By operating on log-power spectra, one can seamlessly include conventional spectral subtraction techniques, and the parameter space typically has a lower dimension. The performance of S-ForkGAN is assessed for automatic speech recognition (ASR) using the TIMIT data set and a wide range of noise conditions. It is shown that S-ForkGAN outperforms existing GAN-based techniques and that it has a lower complexity. 
    more » « less