Traditional Deep Neural Network (DNN) security is mostly related to the well-known adversarial input example attack.Recently, another dimension of adversarial attack, namely, attack on DNN weight parameters, has been shown to be very powerful. Asa representative one, the Bit-Flip based adversarial weight Attack (BFA) injects an extremely small amount of faults into weight parameters to hijack the executing DNN function. Prior works of BFA focus on un-targeted attacks that can hack all inputs into a random output class by flipping a very small number of weight bits stored in computer memory. This paper proposes the first work oftargetedBFA based (T-BFA) adversarial weight attack on DNNs, which can intentionally mislead selected inputs to a target output class. The objective is achieved by identifying the weight bits that are highly associated with classification of a targeted output through a class-dependent weight bit searching algorithm. Our proposed T-BFA performance is successfully demonstrated on multiple DNN architectures for image classification tasks. For example, by merely flipping 27 out of 88 million weight bits of ResNet-18, our T-BFA can misclassify all the images from Hen class into Goose class (i.e., 100% attack success rate) in ImageNet dataset, while maintaining 59.35% validation accuracy.
more »
« less
TBT: Targeted Neural Network Attack With Bit Trojan
Security of modern Deep Neural Networks (DNNs) is under severe scrutiny as the deployment of these models become widespread in many intelligence-based applications. Most recently, DNNs are attacked through Trojan which can effectively infect the model during the training phase and get activated only through specific input patterns (i.e, trigger) during inference. In this work, for the first time, we propose a novel Targeted Bit Trojan(TBT) method, which can insert a targeted neural Trojan into a DNN through bit-flip attack. Our algorithm efficiently generates a trigger specifically designed to locate certain vulnerable bits of DNN weights stored in main memory (i.e., DRAM). The objective is that once the attacker flips these vulnerable bits, the network still operates with normal inference accuracy with benign input. However, when the attacker activates the trigger by embedding it with any input, the network is forced to classify all inputs to a certain target class. We demonstrate that flipping only several vulnerable bits identified by our method, using available bit-flip techniques (i.e, row-hammer), can transform a fully functional DNN model into a Trojan-infected model. We perform extensive experiments of CIFAR-10, SVHN and ImageNet datasets on both VGG-16 and Resnet-18 architectures. Our proposed TBT could classify 92 of test images to a target class with as little as 84 bit-flips out of 88 million weight bits on Resnet-18 for CIFAR10 dataset.
more »
« less
- PAR ID:
- 10295343
- Date Published:
- Journal Name:
- 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
- Page Range / eLocation ID:
- 13195 to 13204
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Recently, a new paradigm of the adversarial attack on the quantized neural network weights has attracted great attention, namely, the Bit-Flip based adversarial weight attack, aka. Bit-Flip Attack (BFA). BFA has shown extraordinary attacking ability, where the adversary can malfunction a quantized Deep Neural Network (DNN) as a random guess, through malicious bit-flips on a small set of vulnerable weight bits (e.g., 13 out of 93 millions bits of 8-bit quantized ResNet-18). However, there are no effective defensive methods to enhance the fault-tolerance capability of DNN against such BFA. In this work, we conduct comprehensive investigations on BFA and propose to leverage binarization-aware training and its relaxation - piece-wise clustering as simple and effective countermeasures to BFA. The experiments show that, for BFA to achieve the identical prediction accuracy degradation (e.g., below 11% on CIFAR-10), it requires 19.3× and 480.1× more effective malicious bit-flips on ResNet-20 and VGG-11 respectively, compared to defend-free counterparts.more » « less
-
We propose AccHashtag, the first framework for high-accuracy detection of fault-injection attacks on Deep Neural Networks (DNNs) with provable bounds on detection performance. Recent literature in fault-injection attacks shows the severe DNN accuracy degradation caused by bit flips. In this scenario, the attacker changes a few DNN weight bits during execution by injecting faults to the dynamic random-access memory (DRAM). To detect bit flips, AccHashtag extracts a unique signature from the benign DNN prior to deployment. The signature is used to validate the model’s integrity and verify the inference output on the fly. We propose a novel sensitivity analysis that identifies the most vulnerable DNN layers to the fault-injection attack. The DNN signature is constructed by encoding the weights in vulnerable layers using a low-collision hash function. During DNN inference, new hashes are extracted from the target layers and compared against the ground-truth signatures. AccHashtag incorporates a lightweight methodology that allows for real-time fault detection on embedded platforms. We devise a specialized compute core for AccHashtag on field-programmable gate arrays (FPGAs) to facilitate online hash generation in parallel to DNN execution. Extensive evaluations with the state-of-the-art bit-flip attack on various DNNs demonstrate the competitive advantage of AccHashtag in terms of both attack detection and execution overhead.more » « less
-
null (Ed.)Security of machine learning is increasingly becoming a major concern due to the ubiquitous deployment of deep learning in many security-sensitive domains. Many prior studies have shown external attacks such as adversarial examples that tamper the integrity of DNNs using maliciously crafted inputs. However, the security implication of internal threats (i.e., hardware vulnerabilities) to DNN models has not yet been well understood. In this paper, we demonstrate the first hardware-based attack on quantized deep neural networks–DeepHammer–that deterministically induces bit flips in model weights to compromise DNN inference by exploiting the rowhammer vulnerability. DeepHammer performs an aggressive bit search in the DNN model to identify the most vulnerable weight bits that are flippable under system constraints. To trigger deterministic bit flips across multiple pages within a reasonable amount of time, we develop novel system-level techniques that enable fast deployment of victim pages, memory-efficient rowhammering and precise flipping of targeted bits. DeepHammer can deliberately degrade the inference accuracy of the victim DNN system to a level that is only as good as random guess, thus completely depleting the intelligence of targeted DNN systems. We systematically demonstrate our attacks on real systems against 11 DNN architectures with 4 datasets corresponding to different application domains. Our evaluation shows that DeepHammer is able to successfully tamper DNN inference behavior at run-time within a few minutes. We further discuss several mitigation techniques from both algorithm and system levels to protect DNNs against such attacks. Our work highlights the need to incorporate security mechanisms in future deep learning systems to enhance the robustness against hardware-based deterministic fault injections.more » « less
-
Abstract We present a novel deep neural network (DNN) training scheme and resistive RAM (RRAM) in-memory computing (IMC) hardware evaluation towards achieving high accuracy against RRAM device/array variations and enhanced robustness against adversarial input attacks. We present improved IMC inference accuracy results evaluated on state-of-the-art DNNs including ResNet-18, AlexNet, and VGG with binary, 2-bit, and 4-bit activation/weight precision for the CIFAR-10 dataset. These DNNs are evaluated with measured noise data obtained from three different RRAM-based IMC prototype chips. Across these various DNNs and IMC chip measurements, we show that our proposed hardware noise-aware DNN training consistently improves DNN inference accuracy for actual IMC hardware, up to 8% accuracy improvement for the CIFAR-10 dataset. We also analyze the impact of our proposed noise injection scheme on the adversarial robustness of ResNet-18 DNNs with 1-bit, 2-bit, and 4-bit activation/weight precision. Our results show up to 6% improvement in the robustness to black-box adversarial input attacks.more » « less