skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Excess demand prediction for bike sharing systems
One of the most crucial elements for the long-term success of shared transportation systems (bikes, cars etc.) is their ubiquitous availability. To achieve this, and avoid having stations with no available vehicle, service operators rely on rebalancing . While different operators have different approaches to this functionality, overall it requires a demand-supply analysis of the various stations. While trip data can be used for this task, the existing methods in the literature only capture the observed demand and supply rates. However, the excess demand rates (e.g., how many customers attempted to rent a bike from an empty station) are not recorded in these data, but they are important for the in-depth understanding of the systems’ demand patterns that ultimately can inform operations like rebalancing. In this work we propose a method to estimate the excess demand and supply rates from trip and station availability data. Key to our approach is identifying what we term as excess demand pulse (EDP) in availability data as a signal for the existence of excess demand. We then proceed to build a Skellam regression model that is able to predict the difference between the total demand and supply at a given station during a specific time period. Our experiments with real data further validate the accuracy of our proposed method.  more » « less
Award ID(s):
1739413
PAR ID:
10295474
Author(s) / Creator(s):
;
Editor(s):
Chiabaut, Nicolas
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
6
ISSN:
1932-6203
Page Range / eLocation ID:
e0252894
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The problem of traffic prediction is paramount in a plethora of applications, ranging from individual trip planning to urban planning. Existing work mainly focuses on traffic prediction on road networks. Yet, public transportation contributes a significant portion to overall human mobility and passenger volume. For example, the Washington, DC metro has on average 600,000 passengers on a weekday. In this work, we address the problem of modeling, classifying and predicting such passenger volume in public transportation systems. We study the case of the Washington, DC metro exploring fare card data, and specifically passenger in- and outflow at stations. To reduce dimensionality of the data, we apply principal component analysis to extract latent features for different stations and for different calendar days. Our unsupervised clustering results demonstrate that these latent features are highly discriminative. They allow us to derive different station types (residential, commercial, and mixed) and to effectively classify and identify the passenger flow of “unknown” stations. Finally, we also show that this classification can be applied to predict the passenger volume at stations. By learning latent features of stations for some time, we are able to predict the flow for the following hours. Extensive experimentation using a baseline neural network and two naïve periodicity approaches shows the considerable accuracy improvement when using the latent feature based approach. 
    more » « less
  2. null (Ed.)
    Hydropower is the largest renewable energy source for electricity generation in the world, with numerous benefits in terms of: environment protection (near-zero air pollution and climate impact), cost-effectiveness (long-term use, without significant impacts of market fluctuation), and reliability (quickly respond to surge in demand). However, the effectiveness of hydropower plants is affected by multiple factors such as reservoir capacity, rainfall, temperature and fluctuating electricity demand, and particularly their complicated relationships, which make the prediction/recommendation of station operational output a difficult challenge. In this paper, we present DeepHydro, a novel stochastic method for modeling multivariate time series (e.g., water inflow/outflow and temperature) and forecasting power generation of hydropower stations. DeepHydro captures temporal dependencies in co-evolving time series with a new conditioned latent recurrent neural networks, which not only considers the hidden states of observations but also preserves the uncertainty of latent variables. We introduce a generative network parameterized on a continuous normalizing flow to approximate the complex posterior distribution of multivariate time series data, and further use neural ordinary differential equations to estimate the continuous-time dynamics of the latent variables constituting the observable data. This allows our model to deal with the discrete observations in the context of continuous dynamic systems, while being robust to the noise. We conduct extensive experiments on real-world datasets from a large power generation company consisting of cascade hydropower stations. The experimental results demonstrate that the proposed method can effectively predict the power production and significantly outperform the possible candidate baseline approaches. 
    more » « less
  3. Charging infrastructure is the coupling link between power and transportation networks, thus determining charging station siting is necessary for planning of power and transportation systems. While previous works have either optimized for charging station siting given historic travel behavior, or optimized fleet routing and charging given an assumed placement of the stations, this paper introduces a linear program that optimizes for station siting and macroscopic fleet operations in a joint fashion. Given an electricity retail rate and a set of travel demand requests, the optimization minimizes total cost for an autonomous EV fleet comprising of travel costs, station procurement costs, fleet procurement costs, and electricity costs, including demand charges. Specifically, the optimization returns the number of charging plugs for each charging rate (e.g., Level 2, DC fast charging) at each candidate location, as well as the optimal routing and charging of the fleet. From a case-study of an electric vehicle fleet operating in San Francisco, our results show that, albeit with range limitations, small EVs with low procurement costs and high energy efficiencies are the most cost-effective in terms of total ownership costs. Furthermore, the optimal siting of charging stations is more spatially distributed than the current siting of stations, consisting mainly of high-power Level 2 AC stations (16.8 kW) with a small share of DC fast charging stations and no standard 7.7kW Level 2 stations. Optimal siting reduces the total costs, empty vehicle travel, and peak charging load by up to 10%. 
    more » « less
  4. As electric vehicles (EVs) gradually replace fuel vehicles and provide transportation services in cities, e.g., electric taxi fleets, solar-powered charging stations with energy storage systems have been deployed to provide charging services for EV fleets. The mixture of solar-powered and traditional charging stations brings efficiency challenges to charging stations and reliability challenges to power systems. In this article, we explore e-taxis’ mobility and charging demand flexibility to co-optimize service quality of e-taxi fleets and system cost of charging infrastructures, e.g., solar power under-utilization and reliability issues of power distribution networks due to reverse power flow. We propose SAC, an e-taxi coordination framework to dispatch e-taxis for charging or serving passengers under spatial-temporal dynamics of renewable energy and passenger mobility, which integrates the renewable power generation estimation from a forecast system. Moreover, we extend our design to a stochastic Model Predictive Control problem to handle the uncertainty of solar power generation, aiming to fully utilize generated solar power. Our data-driven evaluation shows that SAC significantly outperforms existing solutions, enhancing the usage rate of solar power by up to 172.6%, while maintaining e-taxi service quality with very small overhead, i.e., reducing the supply-demand ratio by 2.2%. 
    more » « less
  5. Abstract Long‐term experiments are critical for understanding ecological processes, but their management comes with unique challenges. As time passes, projects may encounter unavoidable changes due to external factors, like availability of materials, affecting aspects of their research methodology. At the Kellogg Biological Station Long‐Term Ecological Research Site, one of the many National Science Foundation‐funded long‐term research stations, a three‐decade project recently experienced a supply‐chain‐induced change in insect sampling methodology in their lady beetle observation study. Since 1989, lady beetles (Coleoptera: Coccinellidae) have been sampled weekly over the growing season using yellow sticky cards. In 2021, the original sticky traps were discontinued by the manufacturer and replaced with a similar, but not identical trap. We conducted a 3‐year study while the new traps were phased in to examine how the trap change would impact the observed biodiversity patterns at the site. We examined community metrics and individual taxa captures to examine within‐year and between‐year differences in performance between the card types. Overall, we noted several small but statistically detectable differences in capture patterns between the two trap types. After accounting for other sources of variation, we observed a difference in Shannon diversity of insects captured on the two card types, but not richness or abundance, for the overall insect community. Yet, these differences were dwarfed by the magnitude of difference observed between years within card types. For individual taxa, similar patterns held: between trap differences could be detected statistically, but the number of differences in capture rate between trap types was less than the number of differences observed for the same trap, between years. Thus, we conclude that while subtle changes in methodology could impact data produced in long‐term experiments; in this case, the magnitude of this change is smaller than other factors such as time and plant treatment. However, if sustained changes in the capture rates of focal taxa are observed, future data users may use our observations to specifically quantify and correct for these shifting patterns related to the protocol change. 
    more » « less