skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Herbage Yield, Lamb Growth and Foraging Behavior in Agrivoltaic Production System
Agrivoltaic systems are designed to mutually benefit solar energy and agricultural production in the same location for dual-use of land. This study was conducted to compare lamb growth and pasture production from solar pastures in agrivoltaic systems and traditional open pastures over 2 years in Oregon. Weaned Polypay lambs grew at 120 and 119 g head −1 d −1 in solar and open pastures, respectively in spring 2019 ( P = 0.90). The liveweight production between solar (1.5 kg ha −1 d −1 ) and open pastures (1.3 kg ha −1 d −1 ) were comparable ( P = 0.67). Similarly, lamb liveweight gains and liveweight productions were comparable in both solar (89 g head −1 d −1 ; 4.6 kg ha −1 d −1 ) and open (92 g head −1 d −1 ; 5.0 kg ha −1 d −1 ) pastures (all P > 0.05) in 2020. The daily water consumption of the lambs in spring 2019 were similar during early spring, but lambs in open pastures consumed 0.72 L head −1 d −1 more water than those grazed under solar panels in the late spring period ( P < 0.01). No difference was observed in water intake of the lambs in spring 2020 ( P = 0.42). Over the entire period, solar pastures produced 38% lower herbage than open pastures due to low pasture density in fully shaded areas under solar panels. The results from our grazing study indicated that lower herbage mass available in solar pastures was offset by higher forage quality, resulting in similar spring lamb production to open pastures. Our findings also suggest that the land productivity could be greatly increased through combining sheep grazing and solar energy production on the same land in agrivoltaics systems.  more » « less
Award ID(s):
1740082
PAR ID:
10295504
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Sustainable Food Systems
Volume:
5
ISSN:
2571-581X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The challenge of meeting growing food and energy demand while also mitigating climate change drives the development and adoption of renewable technologies ad approaches. Agrivoltaic systems are an approach that allows for both agricultural and electrical production on the same land area. These systems have the potential to reduced water demand and increase the overall water productivity of certain crops. We observed the microclimate and growth characteristics of Tomato plants (Solanum lycopersicon var. Legend) grown within three locations on an Agrivoltaic field (control, interrow, and below panels) and with two different irrigation treatments (full and deficit). Total crop yield was highest in the control fully irrigated areas a, b (88.42 kg/row, 68.13 kg/row), and decreased as shading increased, row full irrigated areas a, b had 53.59 kg/row, 32.76 kg/row, panel full irrigated areas a, b had (33.61 kg/row, 21.64 kg/row). Water productivity in the interrow deficit treatments was 53.98 kg/m3 greater than the control deficit, and 24.21 kg/m3 greater than the panel deficit, respectively. These results indicate the potential of Agrivoltaic systems to improve water productivity even for crops that are traditionally considered shade-intolerant. 
    more » « less
  2. Potassium (K) deficiency is common in cotton (Gossypium hirsutum L.)-growing areas. This study aims to investigate the effects of different rates of foliar K fertilizer application on three cotton varieties: NG 5711 B3XF (V1), PHY 480 W3FE (V2), and FM 1953GLTP (V3). Potassium fertilizer was dissolved in water and was foliar-applied at 34, 50, and 67 kg ha−1. Cotton plant height (CH) and canopy width (CW) were monitored throughout the growing season. The results showed that foliar K fertilizer application significantly impacted the CH and CW in dry years. Although insignificant, the cotton lint yield increased by 15% and 20% with 34 and 50 kg ha−1 in 2020 and by 9% and 7% with 50 and 67 kg ha−1 in 2021, indicating the potential for improved lint yield with foliar K application in rainfed production systems. Similarly, variety V3 had significantly greater lint and seed yields than V1 in 2020. The average lint yield among the varieties was 32%, and the seed yield was 27% greater in 2020 than in 2021. The cotton fiber color grade was significantly greater at 50 kg ha−1 in 2020 and 67 kg ha−1 in 2021. Cotton variety significantly affected color grade, uniformity, staple length, Col, RD, and Col-b contents in 2020 and 2021. The results suggest that foliar K application can enhance cotton production in rainfed production systems. However, more research is required to quantify varietal and foliar K application rates for improved lint yield and quality. 
    more » « less
  3. Perennial grasslands, including prairie and pasture, have declined with tremendous environmental and social costs. This decline reflects unequal policy support for grasslands and managed grazing compared to row crops. To create a resource for community partners and decision-makers, we reviewed and analyzed the policy tools and implementation capacity that supports and constrains grasslands and managed grazing in the U.S. Upper Midwest. Risk reduction subsidies for corn and soybeans far outpace the support for pasture. Some states lost their statewide grazing specialist when the federal Grazing Lands Conservation Initiative lapsed. The United States Department of Agriculture, Natural Resources Conservation Service support for lands with prescribed grazing practices declined after 2005 but remained relatively steady 2010–2020. These results reveal the policy disadvantage for grasslands and managed grazing in comparison with row crop agriculture for milk and meat production. Grassland and grazing policies have an important nexus with water quality, biodiversity, carbon and outdoor recreation policy. Socially just transitions to well-managed, grazed grasslands require equity-oriented interventions that support community needs. We synthesized recommendations for national and state policy that farmers and other grazing professionals assert would support perennial grasslands and grazing, including changes in insurance, conservation programs, supply chains, land access, and fair labor. These policies would provide critical support for grass-based agriculture and prairies that we hope will help build soil, retain nutrients, reduce flooding and enhance biodiversity while providing healthy food, jobs, and communities. 
    more » « less
  4. Abstract Intensification of livestock production has reduced heterogeneity in vegetative structure in managed grasslands, which has been linked to widespread declines in grassland songbird populations throughout North America. Patch-burn grazing management aims to restore some of that heterogeneity in vegetative structure by burning discrete pasture sections, so that cattle preferentially graze in recently burned areas. Although patch-burn grazing can increase reproductive success of grassland songbirds, we know little about possible interactions with regional variation in predator communities or brood parasite abundance, or annual variation in weather conditions. Using six years of data from two tallgrass prairie sites in eastern Kansas, USA, we tested effects of patch-burn grazing on the rates of brood parasitism, clutch size, nest survival, and fledging success of three common grassland songbirds, Dickcissels (Spiza americana), Eastern Meadowlarks (Sturnella magna), and Grasshopper Sparrows (Ammodramus savannarum), among pastures managed with patch-burn grazing versus pastures that were annually burned and either grazed or ungrazed. Dickcissel nests experienced lower parasitism (72.8 ± 4.6% SE vs. 89.1 ± 2.2%) and Eastern Meadowlarks had higher nest survival (63.2 ± 20.5% vs. 16.5 ± 3.5%) in annually burned and ungrazed pastures than pastures managed with patch-burn grazing. However, average number of host fledglings per nesting attempt did not differ among management treatments for any species. Annual variation in weather conditions had a large effect on vegetation structure, but not on reproductive success. Probability of brood parasitism was consistently high (25.5‒84.7%) and nest survival was consistently low (9.9–16.9%) for all species pooled across treatments, sites, and years, indicating that combined effects of predation, parasitism and drought can offset potential benefits of patch-burn grazing management previously found in tallgrass prairies. Although differences in reproductive success among management treatments were minimal, patch-burn grazing management could still benefit population dynamics of grassland songbirds in areas where nest predators and brood parasites are locally abundant by providing suitable nesting habitat for bird species that require greater amounts of vegetation cover and litter, generally not present in burned pastures. 
    more » « less
  5. Abstract Rapid warming in northern ecosystems over the past four decades has resulted in earlier spring, increased precipitation, and altered timing of plant–animal interactions, such as herbivory. Advanced spring phenology can lead to longer growing seasons and increased carbon (C) uptake. Greater precipitation coincides with greater cloud cover possibly suppressing photosynthesis. Timing of herbivory relative to spring phenology influences plant biomass. None of these changes are mutually exclusive and their interactions could lead to unexpected consequences for Arctic ecosystem function. We examined the influence of advanced spring phenology, cloud cover, and timing of grazing on C exchange in the Yukon–Kuskokwim Delta of western Alaska for three years. We combined advancement of the growing season using passive-warming open-top chambers (OTC) with controlled timing of goose grazing (early, typical, and late season) and removal of grazing. We also monitored natural variation in incident sunlight to examine the C exchange consequences of these interacting forcings. We monitored net ecosystem exchange of C (NEE) hourly using an autochamber system. Data were used to construct daily light curves for each experimental plot and sunlight data coupled with a clear-sky model was used to quantify daily and seasonal NEE over a range of incident sunlight conditions. Cloudy days resulted in the largest suppression of NEE, reducing C uptake by approximately 2 g C m−2d−1regardless of the timing of the season or timing of grazing. Delaying grazing enhanced C uptake by approximately 3 g C m−2d−1. Advancing spring phenology reduced C uptake by approximately 1.5 g C m−2d−1, but only when plots were directly warmed by the OTCs; spring advancement did not have a long-term influence on NEE. Consequently, the two strongest drivers of NEE, cloud cover and grazing, can have opposing effects and thus future growing season NEE will depend on the magnitude of change in timing of grazing and incident sunlight. 
    more » « less