Abstract Background Most physical activity (PA) during school occurs at recess; however, recess PA may be influenced by children’s thermal comfort and interaction with nature, neither of which have concurrently been measured reliably in previous studies. This study tests the reliability of SOPLAY-SN, an adaption of the validated System for Observing Play and Leisure Activity in Youth (SOPLAY) to measure Shade and Nature (SN) alongside PA, and associations between children’s PA and interaction with shade and nature during recess to highlight the utility of the tool. Methods Interactions with shade and nature were measured using systematic direct observation at two playgrounds (primary-grade = ages 5–8, upper-grade = ages 9–12) during recess at an elementary school in Phoenix, Arizona (USA). Pairs conducted observations over four warm days (primary = 29–34 °C, upper-grade = 32–36 °C) in May 2021 ( N = 179 scans). Intraclass correlation coefficients (ICC) were used to calculate inter-rater reliability. Mean counts, frequencies, and Kendall rank correlation coefficient tests were used to assess relations between PA level and interactions with shade and nature. Results Reliability was good for sedentary behavior (ICC = 0.98); light PA (LPA; ICC = 0.80) and moderate-to-vigorous PA (MVPA; ICC = 0.94); shade interaction (ICC = 0.95); and nature interaction (ICC = 0.80) and average agreement was good (86% overall PA, 88% shade, 90% nature). Most (60%) primary-grade children were observed in the shade, with 64% under a covered play structure where children were mainly (47%) sedentary. Of the 11% of primary-grade students observed interacting with nature, 90% occurred in a grass field with trees. Among upper-grade children, 23% were observed in the shade with 53% in grass fields where 48% of play was light. Few (7%) upper-grade children were observed interacting with nature, with most instances (76%) in a grass field with trees. Among primary-grade children, shade was correlated with sedentary behavior ( τ b = 0.63, p < .05); LPA ( τ b = 0.39, p < .05); MVPA ( τ b = 0.56, p < .05); and nature interactions with sedentary behavior ( τ b = 0.16, p < .05). Among upper-grade children, shade was correlated with sedentary behavior ( τ b = 0.27, p < .05) and LPA ( τ b = 0.21, p < .05). Conclusions SOPLAY-SN is a reliable tool for measuring children’s interaction with shade and nature and participation in PA. Understanding how shade and nature impact movement during recess can inform playground design for children’s health and well-being.
more »
« less
Seasons, weather, and device-measured movement behaviors: a scoping review from 2006 to 2020
Abstract Background This scoping review summarized research on (a) seasonal differences in physical activity and sedentary behavior, and (b) specific weather indices associated with those behaviors. Methods PubMed, CINAHL, and SPORTDiscus were searched to identify relevant studies. After identifying and screening 1459 articles, data were extracted from 110 articles with 118,189 participants from 30 countries (almost exclusively high-income countries) on five continents. Results Both physical activity volume and moderate-to-vigorous physical activity (MVPA) were greater in summer than winter. Sedentary behavior was greater in winter than either spring or summer, and insufficient evidence existed to draw conclusions about seasonal differences in light physical activity. Physical activity volume and MVPA duration were positively associated with both the photoperiod and temperature, and negatively associated with precipitation. Sedentary behavior was negatively associated with photoperiod and positively associated with precipitation. Insufficient evidence existed to draw conclusions about light physical activity and specific weather indices. Many weather indices have been neglected in this literature (e.g., air quality, barometric pressure, cloud coverage, humidity, snow, visibility, windchill). Conclusions The natural environment can influence health by facilitating or inhibiting physical activity. Behavioral interventions should be sensitive to potential weather impacts. Extreme weather conditions brought about by climate change may compromise health-enhancing physical activity in the short term and, over longer periods of time, stimulate human migration in search of more suitable environmental niches.
more »
« less
- Award ID(s):
- 1808266
- PAR ID:
- 10295524
- Date Published:
- Journal Name:
- International Journal of Behavioral Nutrition and Physical Activity
- Volume:
- 18
- Issue:
- 1
- ISSN:
- 1479-5868
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Increased physical activity is not related to markers of cardiometabolic health in two lemur speciesAbstract Insufficient physical activity is a major risk factor for cardiometabolic disease (i.e., unhealthy weight gain, heart disease, and diabetes) in humans and may also negatively affect health of primates in human care. Effects of physical activity on energy expenditure and cardiometabolic health are virtually unstudied in nonhuman primates. We investigated physical activity and metabolic markers in 15 adult ring‐tailed lemurs (Lemur catta) and 11 Coquerel's sifakas (Propithecus coquereli) at the Duke Lemur Center during a period of low activity in winter when the animals were housed in buildings (with outdoor access) and a period of high activity when individuals were free‐ranging in large, outdoor, forested enclosures. We compared body mass, blood glucose, triglycerides, HDL‐ and LDL‐cholesterol, physical activity via accelerometry, and total energy expenditure (TEE) via the doubly labeled water method (in ring‐tailed lemurs only) between both conditions. Both species were more active and had a lower body mass in summer. Ring‐tailed lemurs had a higher TEE and lower triglyceride levels in summer, whereas sifaka had higher triglyceride levels in summer. Individuals that increased their activity more, also lost more body mass. Individuals that lost more body mass, also had a positive change in HDL‐cholesterol (i.e., higher values in summer). Changes in activity were not associated with changes in markers of metabolic health, body fat percentage and TEE (both unadjusted and adjusted for body composition). Older age was associated with lower activity in both species, and decreased glucose in ring‐tailed lemurs, but was otherwise unrelated to metabolic markers and, for ring‐tailed lemurs, adjusted TEE. Overall, body mass was lower during summer but the increase in physical activity did not strongly influence metabolic health or TEE in these populations.more » « less
-
Abstract Global climate change is driving species' distributions towards the poles and mountain tops during both non‐breeding and breeding seasons, leading to changes in the composition of natural communities. However, the degree of season differences in climate‐driven community shifts has not been thoroughly investigated at large spatial scales.We compared the rates of change in the community composition during both winter (non‐breeding season) and summer (breeding) and their relation to temperature changes.Based on continental‐scale data from Europe and North America, we examined changes in bird community composition using the community temperature index (CTI) approach and compared the changes with observed regional temperature changes during 1980–2016.CTI increased faster in winter than in summer. This seasonal discrepancy is probably because individuals are less site‐faithful in winter, and can more readily shift their wintering sites in response to weather in comparison to the breeding season. Regional long‐term changes in community composition were positively associated with regional temperature changes during both seasons, but the pattern was only significant during summer due to high annual variability in winter communities. Annual changes in community composition were positively associated with the annual temperature changes during both seasons.Our results were broadly consistent across continents, suggesting some climate‐driven restructuring in both European and North American avian communities. Because community composition has changed much faster during the winter than during the breeding season, it is important to increase our knowledge about climate‐driven impacts during the less‐studied non‐breeding season.more » « less
-
IntroductionThis study assesses the person-specific impact of extreme heat on low-income households using wearable sensors. The focus is on the intensive and longitudinal assessment of physical activity and sleep with the rising person-specific ambient temperature. MethodsThis study recruited 30 participants in a low-income and predominantly Black community in Houston, Texas in August and September of 2022. Each participant wore on his/her wrist an accelerometer that recorded person-specific ambient temperature, sedentary behavior, physical activity intensity (low and moderate to vigorous), and sleep efficiency 24 h over 14 days. Mixed effects models were used to analyze associations among physical activity, sleep, and person-specific ambient temperature. ResultsThe main findings include increased sedentary time, sleep impairment with the rise of person-level ambient temperature, and the mitigating role of AC. ConclusionsExtreme heat negatively affects physical activity and sleep. The negative consequences are especially critical for those with limited use of AC in lower-income neighborhoods of color. Staying home with a high indoor temperature during hot days can lead to various adverse health outcomes including accelerated cognitive decline, higher cancer risk, and social isolation.more » « less
-
Abstract In the Asia–Pacific region (APR), extreme precipitation is one of the most critical climate stressors, affecting 60% of the population and adding pressure to governance, economic, environmental, and public health challenges. In this study, we analyzed extreme precipitation spatiotemporal trends in APR using 11 different indices and revealed the dominant factors governing precipitation amount by attributing its variability to precipitation frequency and intensity. We further investigated how these extreme precipitation indices are influenced by El Niño-Southern Oscillation (ENSO) at a seasonal scale. The analysis covered 465 ERA5 (the fifth-generation atmospheric reanalysis of the European Center for Medium-Range Weather Forecasts) study locations over eight countries and regions during 1990–2019. Results revealed a general decrease indicated by the extreme precipitation indices (e.g., the annual total amount of wet-day precipitation, average intensity of wet-day precipitation), particularly in central-eastern China, Bangladesh, eastern India, Peninsular Malaysia and Indonesia. We observed that the seasonal variability of the amount of wet-day precipitation in most locations in China and India are dominated by precipitation intensity in June–August (JJA), and by precipitation frequency in December–February (DJF). Locations in Malaysia and Indonesia are mostly dominated by precipitation intensity in March–May (MAM) and DJF. During ENSO positive phase, significant negative anomalies in seasonal precipitation indices (amount of wet-day precipitation, number of wet days and intensity of wet-day precipitation) were observed in Indonesia, while opposite results were observed for ENSO negative phase. These findings revealing patterns and drivers for extreme precipitation in APR may inform climate change adaptation and disaster risk reduction strategies in the study region.more » « less
An official website of the United States government

