We study the problem of jointly pricing and designing a smart transit system, where a transit agency (the platform) controls a fleet of demand-responsive vehicles (cars) and a fixed line service (buses). The platform offers commuters a menu of options (modes) to travel between origin and destination (e.g., direct car trip, a bus ride, or a combination of the two), and commuters make a utility-maximizing choice within this menu, given the price of each mode. The goal of the platform is to determine an optimal set of modes to display to commuters, prices for these modes, and the design of the transit network in order to maximize the social welfare of the system. In this work, we tackle the commuter choice aspect of this problem, traditionally approached via computationally intensive bilevel programming techniques. In particular, we develop a framework that efficiently decouples the pricing and network design problem: Given an efficient (approximation) algorithm for centralized network design without prices, there exists an efficient (approximation) algorithm for decentralized network design with prices and commuter choice. We demonstrate the practicality of our framework via extensive numerical experiments on a real-world data set. We moreover explore the dependence of metrics such as welfare, revenue, and mode usage on (i) transfer costs and (ii) cost of contracting with on-demand service providers and exhibit the welfare gains of a fully integrated mobility system. Funding: This work was supported by the National Science Foundation [Awards CMMI-2308750, CNS-1952011, and CMMI-2144127]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0452 .
more »
« less
Real-time Approximate Routing for Smart Transit Systems
We study real-time routing policies in smart transit systems, where the platform has a combination of cars and high-capacity vehicles (e.g., buses or shuttles) and seeks to serve a set of incoming trip requests. The platform can use its fleet of cars as a feeder to connect passengers to its high-capacity fleet, which operates on fixed routes. Our goal is to find the optimal set of (bus) routes and corresponding frequencies to maximize the social welfare of the system in a given time window. This generalizes the Line Planning Problem, a widely studied topic in the transportation literature, for which existing solutions are either heuristic (with no performance guarantees), or require extensive computation time (and hence are impractical for real-time use). To this end, we develop a 1-1/e-ε approximation algorithm for the Real-Time Line Planning Problem, using ideas from randomized rounding and the Generalized Assignment Problem. Our guarantee holds under two assumptions: (i) no inter-bus transfers and (ii) access to a pre-specified set of feasible bus lines. We moreover show that these two assumptions are crucial by proving that, if either assumption is relaxed, the łineplanningproblem does not admit any constant-factor approximation. Finally, we demonstrate the practicality of our algorithm via numerical experiments on real-world and synthetic datasets, in which we show that, given a fixed time budget, our algorithm outperforms Integer Linear Programming-based exact methods.
more »
« less
- PAR ID:
- 10295624
- Date Published:
- Journal Name:
- Proceedings of the ACM on Measurement and Analysis of Computing Systems
- Volume:
- 5
- Issue:
- 2
- ISSN:
- 2476-1249
- Page Range / eLocation ID:
- 1 to 30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Urban public transit planning is crucial in reducing traffic congestion and enabling green transportation. However, there is no systematic way to integrate passengers' personal preferences in planning public transit routes and schedules so as to achieve high occupancy rates and efficiency gain of ride-sharing. In this paper, we take the first step tp exact passengers' preferences in planning from history public transit data. We propose a data-driven method to construct a Markov decision process model that characterizes the process of passengers making sequential public transit choices, in bus routes, subway lines, and transfer stops/stations. Using the model, we integrate softmax policy iteration into maximum entropy inverse reinforcement learning to infer the passenger's reward function from observed trajectory data. The inferred reward function will enable an urban planner to predict passengers' route planning decisions given some proposed transit plans, for example, opening a new bus route or subway line. Finally, we demonstrate the correctness and accuracy of our modeling and inference methods in a large-scale (three months) passenger-level public transit trajectory data from Shenzhen, China. Our method contributes to smart transportation design and human-centric urban planning.more » « less
-
This paper introduces a type of circular causation called Congestive Mode-Switching (CMS) that may arise when an increase in congestion penalizes transit relative to driving. In turn, rising congestion persuades some transit riders to drive, which exacerbates congestion further, and so on. This circular causation can beget multiple equilibria with different levels of congestion and transit ridership. The paper explores this logic with a static model of a bus route. When the bus fleet size is fixed, CMS applies because congestion raises the bus cycle time and thus lowers bus frequency, resulting in higher wait times. When the fleet size depends on bus ridership, CMS is joined by economies of scale as a second source of circular causation. We derive the system’s equilibria using a static model in the vein of Walters (1961), which permits us to graphically characterize equilibria in useful ways. The comparative statics of a road improvement show how feedback alters first-order effects. A Downs-Thomson paradox is not possible, because a road improvement aids buses even more than cars. Continuous-time stability analysis shows that multiple equilibria may be stable.more » « less
-
We study the problem of scheduling VMs (Virtual Machines) in a distributed server platform, motivated by cloud computing applications. The VMs arrive dynamically over time to the system, and require a certain amount of resources (e.g. memory, CPU, etc) for the duration of their service. To avoid costly preemptions, we consider non-preemptive scheduling: Each VM has to be assigned to a server which has enough residual capacity to accommodate it, and once a VM is assigned to a server, its service cannot be disrupted (preempted). Prior approaches to this problem either have high complexity, require synchronization among the servers, or yield queue sizes/delays which are excessively large. We propose a non-preemptive scheduling algorithm that resolves these issues. In general, given an approximation algorithm to Knapsack with approximation ratio r , our scheduling algorithm can provide rβ fraction of the throughput region for β < r. In the special case of a greedy approximation algorithm to Knapsack, we further show that this condition can be relaxed to β<1. The parameters β and r can be tuned to provide a tradeoff between achievable throughput, delay, and computational complexity of the scheduling algorithm. Finally extensive simulation results using both synthetic and real traffic traces are presented to verify the performance of our algorithm.more » « less
-
Extreme heat events induced by climate change present a growing risk to transit passenger comfort and health. To reduce exposure, agencies may consider changes to schedules that reduce headways on heavily trafficked bus routes serving vulnerable populations. This paper develops a schedule optimization model to minimize heat exposure and applies it to local bus services in Phoenix, Arizona, using agent-based simulation to inform travel demand and rider characteristics. Rerouting as little as 10% of a fleet is found to reduce network-wide exposure by as much as 35% when operating at maximum fleet capacity. Outcome improvements are notably characterized by diminishing returns, owing to skewed ridership and the inverse relationship between fleet size and passenger wait time. Access to spare vehicles can also ensure significant reductions in exposure, especially under the most extreme temperatures. Rerouting, therefore, presents a low-cost, adaptable resilience strategy to protect riders from extreme heat exposure.more » « less
An official website of the United States government

