Some of the most catastrophic fire events that have occurred in the western US in recent decades, such as the 2018 Camp Fire in California, were ignited by electric utility infrastructure. As wildfires and fire seasons intensify across the western United States, policymakers and utilities alike are working to mitigate the risk of wildfire as it relates to utility infrastructure. We pose the following research question: Is there an association between risk factors such as wildfire hazard potential and social vulnerability, and the inclusion of various strategies in mitigation planning by public or cooperative electric utilities in Washington, such as PSPS provisions and non-expulsion fuse installation? By applying statistical tools including t-tests and logistic regression modeling to test these potential associations, our analysis reveals statistically significant relationships between risk factors and the inclusion of specific wildfire mitigation strategies. We find that the inclusion of PSPS provisions in mitigation planning is significantly and nonlinearly associated with wildfire hazard potential, while social and socioeconomic vulnerability in the utility service area are negatively associated. Additionally, the installation of non-expulsion fuses is negatively associated with socioeconomic vulnerability in service populations. Overall, understanding the factors associated with wildfire mitigation planning can assist policymakers and state agencies in the prioritization of resources and practical support for utilities that may have limited capacity to mitigate wildfire risk.
more »
« less
High-severity wildfire potential – associating meteorology, climate, resource demand and wildfire activity with preparedness levels
National and regional preparedness level (PL) designations support decisions about wildfire risk management. Such decisions occur across the fire season and influence pre-positioning of resources in areas of greatest fire potential, recall of personnel from off-duty status, requests for back-up resources from other areas, responses to requests to share resources with other regions during fire events, and decisions about fuel treatment and risk reduction, such as prescribed burning. In this paper, we assess the association between PLs assigned at national and regional (Northwest) scales and a set of predictors including meteorological and climate variables, wildfire activity and the mobilisation and allocation levels of fire suppression resources. To better understand the implicit weighting applied to these factors in setting PLs, we discern the qualitative and quantitative factors associated with PL designations by statistical analysis of the historical record of PLs across a range of conditions. Our analysis constitutes an important step towards efforts to forecast PLs and to support the future projection and anticipation of firefighting resource demand, thereby aiding wildfire risk management, planning and preparedness.
more »
« less
- PAR ID:
- 10295649
- Date Published:
- Journal Name:
- International Journal of Wildland Fire
- Volume:
- 30
- Issue:
- 1
- ISSN:
- 1049-8001
- Page Range / eLocation ID:
- 30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Background The rising occurrence of simultaneous large wildfires has put strain on United States national fire management capacity leading to increasing reliance on assistance from partner nations abroad. However, limited analysis exists on international resource-sharing patterns and the factors influencing when resources are requested and deployed. Aims This study examines the drivers of international fire management ground and overhead personnel deployed to the United States. Methods Using descriptive statistics and case examples data from 2008 to 2020, this study investigates the conditions under which international personnel are deployed to the United States and their relationship to domestic resource strain. Factors such as fire weather, fire simultaneity, and the impact on people and structures are analysed as potential drivers of demand for international resources. Additionally, barriers to resource sharing, including overlapping fire seasons between countries are examined. Key results The findings indicate that international personnel sharing is more likely when the United States reaches higher preparedness levels, experiences larger area burned, and when fires pose a greater impact on people and structures. However, overlapping fire seasons can limit the ability to share resources with partner nations. Conclusions and implications Understanding the factors influencing resource sharing can help improve collaboration efforts and enhance preparedness for future wildfire seasons.more » « less
-
Abstract Wildfire frequency has increased in the Western US over recent decades, driven by climate change and a legacy of forest management practices. Consequently, human structures, health, and life are increasingly at risk due to wildfires. Furthermore, wildfire smoke presents a growing hazard for regional and national air quality. In response, many scientific tools have been developed to study and forecast wildfire behavior, or test interventions that may mitigate risk. In this study, we present a retrospective analysis of 1 month of the 2020 Northern California wildfire season, when many wildfires with varying environments and behavior impacted regional air quality. We simulated this period using a coupled numerical weather prediction model with online atmospheric chemistry, and compare two approaches to representing smoke emissions: an online fire spread model driven by remotely sensed fire arrival times and a biomass burning emissions inventory. First, we quantify the differences in smoke emissions and timing of fire activity, and characterize the subsequent impact on estimates of smoke emissions. Next, we compare the simulated smoke to surface observations and remotely sensed smoke; we find that despite differences in the simulated smoke surface concentrations, the two models achieve similar levels of accuracy. We present a detailed comparison between the performance and relative strengths of both approaches, and discuss potential refinements that could further improve future simulations of wildfire smoke. Finally, we characterize the interactions between smoke and meteorology during this event, and discuss the implications that increases in regional smoke may have on future meteorological conditions.more » « less
-
GrantWilliamson (Ed.)Increasing wildfire activities across the Great Plains has raised concerns about the effectiveness and safety of prescribed fire as a land management tool. This study analyzes wildfire records from 1992 to 2020 to assess spatiotemporal patterns in wildfire risk and evaluate the role of prescribed fires through the combined analysis of wildfire and prescribed fire data. Results show a threefold increase in both wildfire frequency and area burned, with fire size increasing from east to west and frequency rising from north to south. Wildfire seasons are gradually occurring earlier due to climate change. Negative correlation between prescribed fires in spring and wildfires in summer indicated the effectiveness of prescribed fire in mitigating wildfire risk. Drought severity accounted for 51% of the interannual variability in area burned, while grass curing accounted for 60% of monthly variability of wildfires in grasslands. The ratio of wildfire area burned to total area burned (dominated by prescribed fires) declined from over 20% in early March to below 1% by early April. The results will lay a foundation for the development of a localized fire risk assessment tool that integrates various long-term, mid-term, and short-term risk factors, and support more effective fire management in this region.more » « less
-
Public Safety Power Shutoffs (PSPS) are a critical yet disruptive wildfire mitigation strategy used by electric utilities to reduce ignition risk during periods of elevated fire danger. However, current PSPS decisions often lack transparency and consistency, prompting the need for data-driven tools to better understand utility behavior. This paper presents a Support Vector Machine (SVM) framework to model and interpret PSPS decision-making using post-event wildfire reports. Forecast-based weather and fire behavior features are used as model inputs to represent decision-relevant variables reported by utilities. The model is calibrated using Platt scaling for probabilistic interpretability and adapted across utilities using importance- weighted domain adaptation to address feature distribution shifts. A post-hoc clustering segments PSPS events into wildfire risk zones based on ignition risk metrics excluded from model train- ing. Results demonstrate that the proposed framework supports interpretable, transferable analysis of PSPS decisions, offering insight into utility practices and informing more transparent de- energization planning.more » « less
An official website of the United States government

