Public Safety Power Shutoffs (PSPS) are a critical yet disruptive wildfire mitigation strategy used by electric utilities to reduce ignition risk during periods of elevated fire danger. However, current PSPS decisions often lack transparency and consistency, prompting the need for data-driven tools to better understand utility behavior. This paper presents a Support Vector Machine (SVM) framework to model and interpret PSPS decision-making using post-event wildfire reports. Forecast-based weather and fire behavior features are used as model inputs to represent decision-relevant variables reported by utilities. The model is calibrated using Platt scaling for probabilistic interpretability and adapted across utilities using importance- weighted domain adaptation to address feature distribution shifts. A post-hoc clustering segments PSPS events into wildfire risk zones based on ignition risk metrics excluded from model train- ing. Results demonstrate that the proposed framework supports interpretable, transferable analysis of PSPS decisions, offering insight into utility practices and informing more transparent de- energization planning.
more »
« less
This content will become publicly available on March 1, 2026
Risk Factors and Wildfire Mitigation Planning by Public Utilities in Washington State
Some of the most catastrophic fire events that have occurred in the western US in recent decades, such as the 2018 Camp Fire in California, were ignited by electric utility infrastructure. As wildfires and fire seasons intensify across the western United States, policymakers and utilities alike are working to mitigate the risk of wildfire as it relates to utility infrastructure. We pose the following research question: Is there an association between risk factors such as wildfire hazard potential and social vulnerability, and the inclusion of various strategies in mitigation planning by public or cooperative electric utilities in Washington, such as PSPS provisions and non-expulsion fuse installation? By applying statistical tools including t-tests and logistic regression modeling to test these potential associations, our analysis reveals statistically significant relationships between risk factors and the inclusion of specific wildfire mitigation strategies. We find that the inclusion of PSPS provisions in mitigation planning is significantly and nonlinearly associated with wildfire hazard potential, while social and socioeconomic vulnerability in the utility service area are negatively associated. Additionally, the installation of non-expulsion fuses is negatively associated with socioeconomic vulnerability in service populations. Overall, understanding the factors associated with wildfire mitigation planning can assist policymakers and state agencies in the prioritization of resources and practical support for utilities that may have limited capacity to mitigate wildfire risk.
more »
« less
- Award ID(s):
- 2019762
- PAR ID:
- 10590440
- Publisher / Repository:
- Fire
- Date Published:
- Journal Name:
- Fire
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2571-6255
- Page Range / eLocation ID:
- 118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wildfires pose a growing risk to public safety in regions like the western United States, and, historically, electric power systems have ignited some of the most destructive wildfires. To reduce wildfire ignition risks, power system operators preemptively de-energize high-risk power lines during extreme wildfire conditions as part of "Public Safety Power Shutoff" (PSPS) events. While capable of substantially reducing acute wildfire risks, PSPS events can also result in significant amounts of load shedding as the partially de-energized system may not be able to supply all customer demands. In this work, we investigate the extent to which infrastructure investments can support system operations during PSPS events by enabling reduced load shedding and wildfire ignition risk. We consider the installation of grid-scale batteries, solar PV, and line hardening or maintenance measures (e.g., undergrounding or increased vegetation management). Optimally selecting the locations, types, and sizes of these infrastructure investments requires considering the line de-energizations associated with PSPS events. Accordingly, this paper proposes a multi-period optimization formulation that locates and sizes infrastructure investments while simultaneously choosing line de-energizations to minimize wildfire ignition risk and load shedding. The proposed formulation is evaluated using two geolocated test cases along with realistic infrastructure investment parameters and actual wildfire risk data from the US Geological Survey. We evaluate the performance of investment choices by simulating de-energization decisions for the entire 2021 wildfire season with optimized infrastructure placements. With investment decisions varying significantly for different test cases, budgets, and operator priorities, the numerical results demonstrate the proposed formulation's value in tailoring investment choices to different settings.more » « less
-
Scaling up climate-adaptation in wildfire-prone watersheds requires innovative partnerships and funding. Water utilities are one stakeholder group that could play a role in these efforts. The overarching purpose of this study was to understand water utility engagement in wildfire mitigation efforts in the western United States. We conducted an online survey of water utilities in nine states and received 173 useable responses. While most (68%) respondents were concerned or very concerned about future wildfire events and the impact of wildfire on their operations, only 39% perceived their organization as responsible for mitigating wildfire risk. Federal land ownership decreased feeling responsible for wildfire mitigation, while concern for and information on wildfire increased feeling responsible for mitigation. The perception of response efficacy of mitigation actions for the 68 water utilities engaged in wildfire risk mitigation activities was very high, with most agreeing that mitigation actions are effective. Self-efficacy to implement mitigation actions, however, was mixed, with most utilities wanting more information on wildfire risk and impacts to watershed services. The most reported wildfire mitigation actions were forest thinning and stream restoration. Water utilities engaging in these actions typically partnered with government agencies or other water utilities to complete the work and funded these activities through water user fees and grants. Our findings suggest that water utility engagement in wildfire mitigation for water security could be increased through providing more assessments of wildfire risk to water utilities and through more outreach and engagement with water utilities operating on federal lands.more » « less
-
Quantifying Metrics for Wildfire Ignition Risk from Geographic Data in Power Shutoff Decision-MakingFaults on power lines and other electric equipment are known to cause wildfire ignitions. To mitigate the threat of wildfire ignitions from electric power infrastructure, many utilities preemptively de-energize power lines, which may result in power shutoffs. Data regarding wildfire ignition risks are key inputs for effective planning of power line de-energizations. However, there are multiple ways to formulate risk metrics that spatially aggregate wildfire risk map data, and there are different ways of leveraging this data to make decisions. The key contribution of this paper is to define and compare the results of employing six metrics for quantifying the wildfire ignition risks of power lines from risk maps, considering both threshold- and optimization-based methods for planning power line de-energizations. The numeric results use the California Test System (CATS), a large-scale synthetic grid model with power line corridors accurately representing California infrastructure, in combination with real Wildland Fire Potential Index data for a full year. This is the first application of optimal power shutoff planning on such a large and realistic test case. Our results show that the choice of risk metric significantly impacts the lines that are de-energized and the resulting load shed. We find that the optimization-based method results in significantly less load shed than the threshold-based method while achieving the same risk reduction.more » « less
-
U.S. state, territorial, and tribal government officials develop State Hazard Mitigation Plans (SHMPs) to assist in reducing the risk of disaster impacts on people, physical infrastructure, and the natural environment. The Federal Emergency Management Agency (FEMA) approves SHMPs every five years as a requirement to be eligible to receive funding for FEMA disaster relief grants and disaster mitigation projects. As of April 2023, updated FEMA policy guidance for SHMPs is in effect that calls for greater community engagement in the planning process and stipulates that plans consider equity and climate change. In response to these changes, this project takes the position that more robust conceptualizations of socially vulnerable populations and inclusive use of social vulnerability data can help states in the development of multi-hazard risk assessments. Social vulnerability emerges from systemic inequities, resulting in populations facing disproportionate impacts in disasters. It is a helpful framework for identifying underserved and marginalized populations. Given the crucial importance of considering social vulnerability in mitigation planning, our research team developed two novel datasets with descriptive data of the populations, definitions, and different measures of social vulnerability included in SHMPs for all 50 states and 5 inhabited U.S. territories. Specifically, this project includes two datasets: (1) a quantitative dataset where mentions of socially vulnerable populations and concepts are marked with a binary indicator of inclusion or exclusion in the State Hazard Mitigation Plan and (2) a qualitative dataset that contains quotes and locations of populations and concepts throughout each SHMP. The corresponding mission for each dataset includes: (1) the State Hazard Mitigation Plan dataset; (2) a data dictionary with description of each variable output; (3) variable definitions for the population groups included in State Hazard Mitigation Plans; and (4) a READ ME file with important information. These datasets and associated materials can help State Hazard Mitigation Officers and their technical partners identify gaps in addressing social vulnerability as they update the SHMPs for the areas they serve. These resources are available to researchers, practitioners, policy makers, and others who are interested in addressing social vulnerability in hazard mitigation planning.more » « less
An official website of the United States government
