Structural and functional heterogeneity is a consequence of the weak noncovalent interactions that direct the formation of organic materials from solution precursors. While covalent tethering of solution-phase assemblies provides a compelling strategy to enhance intermolecular order, the effects of this tethering strategy on the formed solid-state materials remain unestablished. This work uses pump–probe microscopy to compare excited-state dynamics in thin films fabricated from tethered perylene bisimide assemblies to those fabricated from noncovalent assemblies. On average, tethered films exhibit faster and more homogeneous excited-state lifetimes, consistent with stronger and more uniform intermolecular coupling. Optical measurements of excited-state diffusion show that the tethered film has ∼75% faster transport than the control film. Kinetic Monte Carlo modeling suggests that the reduction of site energetic disorder is sufficient to quantitatively explain the difference in diffusion coefficients. These results provide strong support that covalent tethering is a promising strategy to enhance the structural and energetic ordering in molecular materials.
more »
« less
Ultrafast Fluctuations in PM6 Domains of Binary and Ternary Organic Photovoltaic Thin Films Probed with Two-Dimensional White-Light Spectroscopy
We present two-dimensional white-light spectroscopy (2DWL) measurements of binary and ternary bulk heterojunctions of the polymer donor PM6 mixed with state-of-the-art nonfullerene acceptors Y6 or IT4F. The ternary film has a shorter lifetime and faster spectral diffusion than either of the binary films. 2D line shape analysis of the PM6 ground state bleach with a Kubo model determines that all three films have similar amplitudes of fluctuations (Δ = 0.29 fs–1) in their transition frequencies, but different relaxation times (ranging from 102 to 24 fs). The ternary film exhibits faster dynamics than either of the binary films. The short lifetime of the ternary blend is consistent with increased photoexcitation transfer and the fast frequency fluctuations are consistent with structural dynamics of aliphatic side chains. These results suggest that the femtosecond fluctuations of PM6 are impacted by the choice of the acceptor molecules. We hypothesize that those dynamics are either indicative, or perhaps the initial source, of structural dynamics that ultimately contribute to solar cell operation.
more »
« less
- Award ID(s):
- 1954700
- PAR ID:
- 10295671
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry Letters
- ISSN:
- 1948-7185
- Page Range / eLocation ID:
- 8972 to 8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In response to the stringent requirements for future DC-link capacitors in electric vehicles (EVs), it is desirable to develop dielectric polymer films with high-temperature tolerance (at least 105 °C) and low loss (dissipation factor, tan δ < 0.003). Although the biaxially oriented poly(ethylene terephthalate) (BOPET) film has an alleged temperature rating of 120 °C, its dielectric performance in terms of breakdown strength and lifetime cannot satisfy the stringent requirements for power electronics in EVs. In this work, we carried out a structure–electrical insulation property relationship study to understand the working mechanism for various PET films, including a commercial BOPET film, an amorphous PET (AmPET) film, and two annealed PET films (AnPET, i.e., cold-crystallized from AmPET). Structural analyses revealed a uniform edge-on crystalline orientation in BOPET with the a* axis in the film normal direction. Meanwhile, a high content of the rigid amorphous fraction (RAF) was identified for BOPET, which resulted from biaxial stretching during processing. On the contrary, AnPET films had a random crystal orientation with lower RAF contents. From dielectric breakdown and lifetime studies, the high-crystallinity AnPET film exhibited better electrical insulation than BOPET, and AmPET had the worst electrical insulation. Electrical conductivity results revealed that the high RAF content in BOPET led to reasonably high breakdown strength and long lifetime only at low temperatures (<100 °C). Meanwhile, PET crystals were more insulating than the amorphous phase, whether mobile, rigid, or glassy. In particular, the flat-on lamellae in the AnPET film were more effective than the edge-on lamellae in BOPET in blocking the conduction of charge carriers (electrons and impurity ions). This understanding will help us design high-temperature semicrystalline polymer films for DC-link capacitors in EVs.more » « less
-
Professor Gregory Hartland (Ed.)An improved optical design for nanosecond diffuse reflectance (DR) spectroscopy is presented. The in-situ analysis of the electron back-reaction and dye regeneration processes in efficient opaque dye-sensitized solar cell devices (DSCs) was scrutinized for the first time using nanosecond DR spectroscopy. The efficient DSC device is based on an opaque TiO2 double-layer film comprising 400 nm light-scattering particles and 20 nm optically transparent particles. Transmission-based laser techniques are not suitable for studying these or other devices by using the opaque morphologies of TiO2 films. However, time-resolved DR flash photolysis enables the exploration of photophysical processes in a broad variety of opaque or highly light-absorbing and light-scattering materials. We experimentally verified the three important components of DR-based spectroscopy: optical configuration, sample condition, and theoretical quantitative optical models. The large optical angle for diffusive light enables efficient light collection and measurement at a relatively low power. We tested the steady-state and time-resolved concentration dependence of the Kubelka−Munk theory for the quantitative analysis of time-resolved results and observed that the dynamics of electron back-reactions are strongly affected by the morphological parameters of the TiO2 films. With a lifetime of 50 μs, the kinetics of electron back-recombination in the device’s photoanode, which is manufactured with 400 nm TiO2 particles and 20 nm TiO2 particles, are 2 orders of magnitude faster than what has been reported to date for 20 nm particles (1 ms). In contrast to electron back-recombination, the dye regeneration process is not influenced by the TiO2 film morphology.more » « less
-
In this paper we show global well-posedness near vacuum for the binary–ternary Boltzmann equation. The binary–ternary Boltzmann equation provides a correction term to the classical Boltzmann equation, taking into account both binary and ternary interactions of particles, and may serve as a more accurate description model for denser gases in non-equilibrium. Well-posedness of the classical Boltzmann equation and, independently, the purely ternary Boltzmann equation follow as special cases. To prove global well-posedness, we use a Kaniel–Shinbrot iteration and related work to approximate the solution of the non-linear equation by monotone sequences of super- solutions and subsolutions. This analysis required establishing new convolution-type estimates to control the contribution of the ternary collisional operator to the model. We show that the ternary operator allows consideration of softer potentials than the one binary operator, and consequently our solution to the ternary correction of the Boltzmann equation preserves all the properties of the binary interactions solution. These results are novel for collisional operators of monoatomic gases with either hard or soft potentials that model both binary and ternary interactions.more » « less
-
Sulfide-based solid electrolytes (SEs) are emerging as compelling materials for all-solid-state batteries (ASSBs), primarily due to their high ionic conductivities and robust mechanical stability. In particular, glassy SEs (GSEs) comprising mixed Si and P glassformers show promise, thanks to their efficient synthesis process and their intrinsic ability to prevent lithium dendrite growth. However, to date the complexity of their glassy structures hinders a complete understanding of the relationships between their structures and properties. Here, new machine learning force field (ML- FF) specifically designed for lithium sulfide-based GSEs has been developed. This ML-FF has been used to investigate the structural characteristics, mechanical properties, and lithium ionic conductivities in binary lithium thiosilicate and lithium thiophosphate GSEs, as well as their ternary mixed glassformer (MGF) lithium thiosilicophosphate GSEs. Molecular dynamic (MD) simulations using the ML-FF were conducted to explore the glass structures in varying compositions, including binary Li2S-SiS2 and Li2S-P2S5, as well as ternary Li2S-SiS2-P2S5. The simulations with the ML-FF yielded consistent results in terms of density, elastic modulus, radial distribution functions, and neutron structure factors, compared to DFT and experimental work. A key focus of this study was to investigate the local environments of Si and P molecular clusters. We discovered that most Si atoms in the Li2S-SiS2 GSE are situated in an edge-sharing environment, while the Li2S-P2S5 glass contained a minor proportion of edge-sharing P2S62- environments. In the ternary 60Li2S-32SiS2-8P2S5 glass, the ML-FF predicted similar P environments as observed in the binary Li2S-P2S5 glass. Additionally, it indicated the coexistence of corner and edge-sharing between PS4 and SiS4 tetrahedra in this ternary composition. Concerning lithium ionic conductivity at 300K, all studied glass compositions exhibited similar magnitudes and followed the Arrhenius relationship. The 50Li2S-50SiS2 glass displayed the lowest conductivity at 2.1 mS/cm, while the 75Li2S-25P2S5 composition exhibited the highest at 3.6 2 mS/cm. The ternary glass showed a conductivity of 2.57 mS/cm, sitting between the two. Interestingly, the predicted conductivities were about an order of magnitude higher than experimental values for the binary glasses but aligning more closely with that of the ternary glass. Moreover, an in-depth analysis of lithium-ion diffusion over the MD trajectory in the ternary glass demonstrated a significant correlation between diffusion pathways and the rotational dynamics of nearby SiS4 or PS4 tetrahedra. The ML-FF developed in this study shows immense potential as a versatile tool for exploring a broad spectrum of solid-state and mixed-former sulfide-based electrolytes.more » « less
An official website of the United States government

