skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Insights into Lithium Sulfide Glass Electrolyte Structures and Ionic Conductivity via Machine Learning Force Field Simulations
Sulfide-based solid electrolytes (SEs) are emerging as compelling materials for all-solid-state batteries (ASSBs), primarily due to their high ionic conductivities and robust mechanical stability. In particular, glassy SEs (GSEs) comprising mixed Si and P glassformers show promise, thanks to their efficient synthesis process and their intrinsic ability to prevent lithium dendrite growth. However, to date the complexity of their glassy structures hinders a complete understanding of the relationships between their structures and properties. Here, new machine learning force field (ML- FF) specifically designed for lithium sulfide-based GSEs has been developed. This ML-FF has been used to investigate the structural characteristics, mechanical properties, and lithium ionic conductivities in binary lithium thiosilicate and lithium thiophosphate GSEs, as well as their ternary mixed glassformer (MGF) lithium thiosilicophosphate GSEs. Molecular dynamic (MD) simulations using the ML-FF were conducted to explore the glass structures in varying compositions, including binary Li2S-SiS2 and Li2S-P2S5, as well as ternary Li2S-SiS2-P2S5. The simulations with the ML-FF yielded consistent results in terms of density, elastic modulus, radial distribution functions, and neutron structure factors, compared to DFT and experimental work. A key focus of this study was to investigate the local environments of Si and P molecular clusters. We discovered that most Si atoms in the Li2S-SiS2 GSE are situated in an edge-sharing environment, while the Li2S-P2S5 glass contained a minor proportion of edge-sharing P2S62- environments. In the ternary 60Li2S-32SiS2-8P2S5 glass, the ML-FF predicted similar P environments as observed in the binary Li2S-P2S5 glass. Additionally, it indicated the coexistence of corner and edge-sharing between PS4 and SiS4 tetrahedra in this ternary composition. Concerning lithium ionic conductivity at 300K, all studied glass compositions exhibited similar magnitudes and followed the Arrhenius relationship. The 50Li2S-50SiS2 glass displayed the lowest conductivity at 2.1 mS/cm, while the 75Li2S-25P2S5 composition exhibited the highest at 3.6 2 mS/cm. The ternary glass showed a conductivity of 2.57 mS/cm, sitting between the two. Interestingly, the predicted conductivities were about an order of magnitude higher than experimental values for the binary glasses but aligning more closely with that of the ternary glass. Moreover, an in-depth analysis of lithium-ion diffusion over the MD trajectory in the ternary glass demonstrated a significant correlation between diffusion pathways and the rotational dynamics of nearby SiS4 or PS4 tetrahedra. The ML-FF developed in this study shows immense potential as a versatile tool for exploring a broad spectrum of solid-state and mixed-former sulfide-based electrolytes.  more » « less
Award ID(s):
1936913
PAR ID:
10591428
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACS Applied Materials and Interfaces
Date Published:
Journal Name:
ACS Applied Materials & Interfaces
Volume:
16
Issue:
15
ISSN:
1944-8244
Page Range / eLocation ID:
18874 to 18887
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract While much of the current research on glassy solid electrolytes (GSEs) has focused on the binary Li2S+P2S5system, compositions with Si are of interest because Si promotes stronger glass formation and allows low‐cost melt‐quenching (MQ) synthesis under ambient pressure. Another advantage is that they can be formed in homogeneous and continuous glass forms, as a result they are free of grain boundaries. In this work, we have examined the structures and electrochemical properties of bulk glass pieces of sulfide and oxy‐sulfide GSE compositions and have also expanded the study by using LiPON glass as a dopant to produce an entirely new class of nitrogen doped mixed oxy‐sulfide nitride (MOSN) GSEs. Upon doping with oxygen and nitrogen, the solid electrolyte interface (SEI) is stabilized and the doped MOSN GSE exhibits a critical current density (CCD) of 1.8 mA cm−2at 100 °C. We also report on improving the glass quality, the SEI engineering and its limitations, and future plans of improving the electrochemical performance of these homogeneous MQ MOSN GSEs. These fundamental results can help to understand the structures and doping effects of the bulk GSEs, and as such can provide a guide to design improved homogeneous grain‐boundary‐free GSEs. 
    more » « less
  2. In the development of sodium all-solid-state batteries (ASSBs), research efforts have focused on synthesizing highly conducting and electrochemically stable solid-state electrolytes. Glassy solid electrolytes (GSEs) have been considered very promising due to their tunable chemistry and resistance to dendrite growth. For these reasons, we focus here on the atomic-level structures and properties of GSEs in the compositional series (0.6–0.08y)Na2S + (0.4 + 0.08y)[(1 – y)[(1 – x)SiS2 + xPS5/2] + yNaPO3] (NaPSiSO). The mechanical moduli, glass transition temperatures, and temperature-dependent conductivity were determined and related to their short-range order structures that were determined using Raman, Fourier transform infrared, and 31P and 29Si magic angle spinning nuclear magnetic resonance spectroscopies. In addition, the conductivity activation energies were modeled using the Christensen–Martin–Anderson–Stuart model. These GSEs appear to be highly crystallization-resistant in the supercooled liquid region where no measurable crystallization below 450 °C could be observed in differential scanning calorimetry studies. Additionally, these GSEs were found to be highly conducting, with conductivities on the order of 10–5 (Ω cm)−1 at room temperature, and processable in the supercooled state without crystallization. For all these reasons, these NaPSiSO GSEs are considered to be highly competitive and easily processable candidate GSEs for enabling sodium ASSBs. 
    more » « less
  3. Abstract While significant efforts are being devoted to improving the ionic conductivity of lithium solid electrolytes (SEs), electronic transport, which has an important role in the calendar life, energy density, and cycling stability of solid‐state batteries (SSBs), is rarely studied. Here, the electronic conductivities of three representative SEs, including Li3PS4, Li7La3Zr2O12, and Li3YCl6, are reported. It is reported that the electronic conductivities of SEs are overestimated from the conventional measurements. By revisiting direct current polarizations using two‐blocking‐electrode cells and the Hebb‐Wagner approach, their sources of inaccuracy are provided and the anodic decomposition of SE is highlighted as the key source for the overestimated result. Modifications in the electrode selection and data interpretation are also proposed to approach the intrinsic electronic conductivity of SEs. A two‐step polarization method is also proposed to estimate the electronic conductivity of sulfides that decompose during measurement. Measured by the modified approach, the electronic conductivities of all SEs are one or two orders of magnitude lower than the reported value. Despite that, the electronic conductivity of sulfides seems to be still quite high to enable SSBs with a long calendar life of >10 years, highlighting the critical need for a more careful study of electronic transport in lithium SEs. 
    more » « less
  4. Abstract To enhance Li+transport in all‐solid‐state batteries (ASSBs), harnessing localized nanoscale disorder can be instrumental, especially in sulfide‐based solid electrolytes (SEs). In this investigation, the transformation of the model SE, Li3PS4, is delved into via the introduction of LiBr.31P nuclear magnetic resonance (NMR)unveils the emergence of a glassy PS43−network interspersed with Br.6Li NMR corroborates swift Li+migration between PS43−and Br, with increased Li+mobility indicated by NMR relaxation measurements. A more than fourfold enhancement in ionic conductivity is observed upon LiBr incorporation into Li3PS4. Moreover, a notable decrease in activation energy underscores the pivotal role of Brincorporation within the anionic lattice, effectively reducing the energy barrier for ion conduction and transitioning Li+transport dimensionality from 2D to 3D. The compatibility of Li3PS4with Li metal is improved through LiBr incorporation, alongside an increase in critical current density from 0.34 to 0.50 mA cm−2, while preserving the electrochemical stability window. ASSBs with 3Li3PS4:LiBr as the SE  showcase robust high‐rate and long‐term cycling performance. These findings collectively indicate the potential of lithium halide incorporation as a promising avenue to enhance the ionic conductivity and stability of SEs. 
    more » « less
  5. Abstract All‐solid‐state potassium batteries emerge as promising alternatives to lithium batteries, leveraging their high natural abundance and cost‐effectiveness. Developing potassium solid electrolytes (SEs) with high room‐temperature ionic conductivity is critical for realizing efficient potassium batteries. In this study, we present the synthesis of K2.98Sb0.91S3.53Cl0.47, showcasing a room‐temperature ionic conductivity of 0.32 mS/cm and a low activation energy of 0.26 eV. This represents an increase of over two orders of magnitude compared to the parent compound K3SbS4, marking the highest reported ionic conductivity for non‐oxide potassium SEs. Solid‐state39K magic‐angle‐spinning nuclear magnetic resonance on K2.98Sb0.91S3.53Cl0.47reveals an increased population of mobile K+ions with fast dynamics. Ab initio molecular dynamics (AIMD) simulations further confirm a delocalized K+density and significantly enhanced K+diffusion. This work demonstrates diversification of the anion sublattice as an effective approach to enhance ion transport and highlights K2.98Sb0.91S3.53Cl0.47as a promising SE for all‐solid‐state potassium batteries. 
    more » « less