The inertial response of a particle to turbulent flows is a problem of relevance to a wide range of environmental and engineering problems. The equation most often used to describe the force balance is the Maxey-Riley equation, which includes in addition to buoyancy and steady drag forces, an unsteady Basset drag force related to past particle acceleration. Here we provide a historical review of how the Maxey-Riley equation was developed and how it is only suited for studies where the Reynolds number is less than unity. Revisiting the innovative mathematical methods employed by Basset (1888), we introduce an alternative formulation for the unsteady drag for application to a broader range of particle motions. While the Basset unsteady drag is negligible at higher Reynolds numbers, the revised unsteady drag is not.
more »
« less
Dynamics of inertial particles on the ocean surface with unrestricted reserve buoyancy
The purpose of this note is to present an enhancement to a Maxey–Riley theory proposed in recent years for the dynamics of inertial particles on the ocean surface [Beron-Vera et al., “Building a Maxey–Riley framework for surface ocean inertial particle dynamics,” Phys. Fluids 31, 096602 (2019)]. This updated model removes constraints on the reserve buoyancy, defined as the fraction of the particle volume above the ocean surface. The refinement results in an equation that correctly describes both the neutrally buoyant and fully buoyant particle scenarios.
more »
« less
- Award ID(s):
- 2148499
- PAR ID:
- 10587253
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Physics of Fluids
- Volume:
- 36
- Issue:
- 10
- ISSN:
- 1070-6631
- Page Range / eLocation ID:
- 101702
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Although the movement and aggregation of microplastics at the ocean surface have been well studied, less is known about the subsurface. Within the Maxey–Riley framework governing the movement of small, rigid spheres with high drag in fluid, the aggregation of buoyant particles is encouraged in vorticity-dominated regions. We explore this process in an idealized model that is qualitatively reminiscent of a 3D eddy with an azimuthal and overturning circulation. In the axially symmetric state, buoyant spherical particles that do not accumulate at the top boundary are attracted to a loop consisting of periodic orbits. Such a loop exists when drag on the particle is sufficiently strong. For small, slightly buoyant particles, this loop is located close to the periodic fluid parcel trajectory. If the symmetric flow is perturbed by a symmetry-breaking disturbance, additional attractors for small, rigid, slightly buoyant particles may arise near periodic orbits of fluid parcels within the resonance zones created by the disturbance. Disturbances with periodic or quasiperiodic time dependence may produce even more attractors, with a shape and location that recurs periodically. However, not all such loops attract, and rigid particles released in the vicinity of one loop may instead be attracted to a nearby attractor. Examples are presented along with mappings of the respective basins of attraction.more » « less
-
A recent Maxey–Riley theory for Sargassum raft motion, which models a raft as a network of elastically interacting finite size, buoyant particles, predicts the carrying flow velocity to be given by the weighted sum of the water and air velocities (1−α)v+αw. The theory provides a closed formula for parameter α, referred to as windage, depending on the water-to-particle-density ratio or buoyancy (δ). From a series of laboratory experiments in an air–water stream flume facility under controlled conditions, we estimate α ranging from 0.02% to 0.96%. On average, our windage estimates can be up to nine times smaller than that considered in conventional Sargassum raft transport modeling, wherein it is customary to add a fraction of w to v chosen in an ad hoc piecemeal manner. Using the formula provided by the Maxey–Riley theory, we estimate δ ranging from 1.00 to 1.49. This is consistent with direct δ measurements, ranging from 0.9 to 1.25, which provide support for our α estimation.more » « less
-
Oscillatory flows have become an indispensable tool in microfluidics, inducing inertial effects for displacing and manipulating fluid-borne objects in a reliable, controllable and label-free fashion. However, the quantitative description of such effects has been confined to limit cases and specialized scenarios. Here we develop an analytical formalism yielding the equation of motion of density-mismatched spherical particles in oscillatory background flows, generalizing previous work. Inertial force terms are systematically derived from the geometry of the flow field together with analytically known Stokes number dependences. Supported by independent, first-principles direct numerical simulations, we find that these forces are important even for nearly density-matched objects such as cells or bacteria, enabling their fast displacement and separation. Our formalism thus consistently incorporates particle inertia into the Maxey–Riley equation, and in doing so provides a generalization of Auton's modification to added mass, as well as recovering the description of acoustic radiation forces on particles as a limiting case.more » « less
-
Abstract The surge of pelagic Sargassum in the Intra-America Seas, particularly the Caribbean Sea, since the early 2010s has raised significant ecological concerns. This study emphasizes the need for a mechanistic understanding of Sargassum dynamics to elucidate the ecological impacts and uncertainties associated with blooms. By introducing a novel transport model, physical components such as ocean currents and winds are integrated with biological aspects affecting the Sargassum life cycle, including reproduction, grounded in an enhanced Maxey–Riley theory for floating particles. Nonlinear elastic forces among the particles are included to simulate interactions within and among Sargassum rafts. This promotes aggregation, consistent with observations, within oceanic eddies, which facilitate their transport. This cannot be achieved by the so-called leeway approach to transport, which forms the basis of current Sargassum modeling. Using satellite-derived data, the model is validated, outperforming the leeway model. Publicly accessible codes are provided to support further research and ecosystem management efforts. This comprehensive approach is expected to improve predictive capabilities and management strategies regarding Sargassum dynamics in affected regions, thus contributing to a deeper understanding of marine ecosystem dynamics and resilience.more » « less
An official website of the United States government

