Abstract Analog photonic solutions offer unique opportunities to address complex computational tasks with unprecedented performance in terms of energy dissipation and speeds, overcoming current limitations of modern computing architectures based on electron flows and digital approaches. The lack of modularization and lumped element reconfigurability in photonics has prevented the transition to an all-optical analog computing platform. Here, we explore, using numerical simulation, a nanophotonic platform based on epsilon-near-zero materials capable of solving in the analog domain partial differential equations (PDE). Wavelength stretching in zero-index media enables highly nonlocal interactions within the board based on the conduction of electric displacement, which can be monitored to extract the solution of a broad class of PDE problems. By exploiting the experimentally achieved control of deposition technique through process parameters, used in our simulations, we demonstrate the possibility of implementing the proposed nano-optic processor using CMOS-compatible indium-tin-oxide, whose optical properties can be tuned by carrier injection to obtain programmability at high speeds and low energy requirements. Our nano-optical analog processor can be integrated at chip-scale, processing arbitrary inputs at the speed of light.
more »
« less
Induced homomorphism: Kirchhoff’s law in photonics
Abstract When solving, modeling or reasoning about complex problems, it is usually convenient to use the knowledge of a parallel physical system for representing it. This is the case of lumped-circuit abstraction, which can be used for representing mechanical and acoustic systems, thermal and heat-diffusion problems and in general partial differential equations. Integrated photonic platforms hold the prospective to perform signal processing and analog computing inherently, by mapping into hardware specific operations which relies on the wave-nature of their signals, without trusting on logic gates and digital states like electronics. Here, we argue that in absence of a straightforward parallelism a homomorphism can be induced. We introduce a photonic platform capable of mimicking Kirchhoff’s law in photonics and used as node of a finite difference mesh for solving partial differential equation using monochromatic light in the telecommunication wavelength. Our approach experimentally demonstrates an arbitrary set of boundary conditions, generating a one-shot discrete solution of a Laplace partial differential equation, with an accuracy above 95% with respect to commercial solvers. Our photonic engine can provide a route to achieve chip-scale, fast (10 s of ps), and integrable reprogrammable accelerators for the next generation hybrid high-performance computing. Summary A photonic integrated platform which can mimic Kirchhoff’s law in photonics is used for approximately solve partial differential equations noniteratively using light, with high throughput and low-energy levels.
more »
« less
- Award ID(s):
- 1748294
- PAR ID:
- 10295749
- Date Published:
- Journal Name:
- Nanophotonics
- Volume:
- 10
- Issue:
- 6
- ISSN:
- 2192-8606
- Page Range / eLocation ID:
- 1711 to 1721
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Solving mathematical equations faster and more efficiently has been a Holy Grail for centuries for scientists and engineers across all disciplines. While electronic digital circuits have revolutionized equation solving in recent decades, it has become apparent that performance gains from brute-force approaches of compute-solvers are quickly saturating over time. Instead, paradigms that leverage the universes’ natural tendency to minimize a system’s free energy, such as annealers or Ising Machines, are being sought after due to favorable complexity scaling. Here, we introduce a programmable analog solver leveraging the formal mathematical equivalence between Maxwell’s equations and photonic circuitry. It features a mesh network of nanophotonic beams to find solutions to partial differential equations. As an example, we designed, fabricated, and demonstrated a novel application-specific photonic integrated circuit comprised of electro-optically reconfigurable nodes and experimentally validated 90 % accuracy with respect to a commercial solver. Finally, we tested this photonic integrated chip performance by simulating thermal diffusion on a spacecraft’s heat shield during re-entry to a planet’s atmosphere. The programmable light-circuitry presented herein offers a facile route for solving complex problems and thus will have profound potential applications across many scientific and engineering fields.more » « less
-
This 3 hour course provides a detailed overview of grid-free Monte Carlo methods for solving partial differential equations (PDEs) based on the walk on spheres (WoS) algorithm, with a special emphasis on problems with high geometric complexity. PDEs are a basic building block of models and algorithms used throughout science, engineering and visual computing. Yet despite decades of research, conventional PDE solvers struggle to capture the immense geometric complexity of the natural world. A perennial challenge is spatial discretization: traditionally, one must partition the domain into a high-quality volumetric mesh—a process that can be brittle, memory intensive, and difficult to parallelize. WoS makes a radical departure from this approach, by reformulating the problem in terms of recursive integral equations that can be estimated using the Monte Carlo method, eliminating the need for spatial discretization. Since these equations strongly resemble those found in light transport theory, one can leverage deep knowledge from Monte Carlo rendering to develop new PDE solvers that share many of its advantages: no meshing, trivial parallelism, and the ability to evaluate the solution at any point without solving a global system of equations. The course is divided into two parts. Part I will cover the basics of using WoS to solve fundamental PDEs like the Poisson equation. Topics include formulating the solution as an integral equation, generating samples via recursive random walks, and employing accelerated distance and ray intersection queries to efficiently handle complex geometries. Participants will also gain experience setting up demo applications involving data interpolation, heat transfer, and geometric optimization using the open-source “Zombie” library, which implements various grid-free Monte Carlo PDE solvers. Part II will feature a mini-panel of academic and industry contributors covering advanced topics including variance reduction, differentiable and multi-physics simulation, and applications in industrial design and robust geometry processing.more » « less
-
Abstract Solving partial differential equations (PDEs) is the cornerstone of scientific research and development. Data-driven machine learning (ML) approaches are emerging to accelerate time-consuming and computation-intensive numerical simulations of PDEs. Although optical systems offer high-throughput and energy-efficient ML hardware, their demonstration for solving PDEs is limited. Here, we present an optical neural engine (ONE) architecture combining diffractive optical neural networks for Fourier space processing and optical crossbar structures for real space processing to solve time-dependent and time-independent PDEs in diverse disciplines, including Darcy flow equation, the magnetostatic Poisson’s equation in demagnetization, the Navier-Stokes equation in incompressible fluid, Maxwell’s equations in nanophotonic metasurfaces, and coupled PDEs in a multiphysics system. We numerically and experimentally demonstrate the capability of the ONE architecture, which not only leverages the advantages of high-performance dual-space processing for outperforming traditional PDE solvers and being comparable with state-of-the-art ML models but also can be implemented using optical computing hardware with unique features of low-energy and highly parallel constant-time processing irrespective of model scales and real-time reconfigurability for tackling multiple tasks with the same architecture. The demonstrated architecture offers a versatile and powerful platform for large-scale scientific and engineering computations.more » « less
-
Quantum computing has the potential to solve certain compute-intensive problems faster than classical computing by leveraging the quantum mechanical properties of superposition and entanglement. This capability can be particularly useful for solving Partial Differential Equations (PDEs), which are challenging to solve even for High-Performance Computing (HPC) systems, especially for multidimensional PDEs. This led researchers to investigate the usage of Quantum-Centric High-Performance Computing (QC-HPC) to solve multidimensional PDEs for various applications. However, the current quantum computing-based PDE-solvers, especially those based on Variational Quantum Algorithms (VQAs) suffer from limitations, such as low accuracy, long execution times, and limited scalability. In this work, we propose an innovative algorithm to solve multidimensional PDEs with two variants. The first variant uses Finite Difference Method (FDM), Classical-to-Quantum (C2Q) encoding, and numerical instantiation, whereas the second variant utilizes FDM, C2Q encoding, and Column-by-Column Decomposition (CCD). We evaluated the proposed algorithm using the Poisson equation as a case study and validated it through experiments conducted on noise-free and noisy simulators, as well as hardware emulators and real quantum hardware from IBM. Our results show higher accuracy, improved scalability, and faster execution times in comparison to variational-based PDE-solvers, demonstrating the advantage of our approach for solving multidimensional PDEs.more » « less
An official website of the United States government

