skip to main content


Title: The Power of Teacher Leadership to Transform CS Education
CS teachers must develop numerous skills and attributes that go beyond those of other K-12 teachers, given the unique nature of the CS education landscape. In fact, CS teachers are often called upon to serve as teacher leaders very early in their CS careers in order to build a CS program in their schools or districts and ensure equitable access to CS courses. So how can we best support CS teachers in growing that leadership knowledge and skills? The American Institutes for Research (AIR) and its CS for All Teachers community of practice recently developed a “stack” of asynchronous and interactive professional learning modules – or micro-credentials – on teacher leadership in CS. There are five micro-credentials included in the stack, which focus on the following topics: 1) Equity in CS, 2) Collaboration in CS, 3) Building a CS Program, 4) Advocacy for CS, and 5) CS Policy. Presenters will discuss the promise of teacher leadership to transform CS education. They will share how the micro-credentials were created and what the literature says about using this approach for professional learning.  more » « less
Award ID(s):
1836310
PAR ID:
10295821
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Constellations Professional Development Summit: CS for Social Good
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In K-12 education, nearly all e"orts focused on expanding computer science education center on the induction of new computer science teachers, with very little attention given to support the ongoing needs of experienced computer science teachers. More seasoned teachers bene!t from deepening their content knowledge, peda gogical practices, and knowledge and capacity to provide equitable and inclusive learning experiences that results in students feeling a sense of belonging in computer science. This panel will discuss (a) the needs of experienced CS teachers from a variety of perspectives, including teacher education researchers, professional development leaders, and high school practitioners and teacher facilitator, and (b) collectively outline a research and practice agenda that focuses on supporting, retaining, and further developing experienced teachers through expanded professional development, leadership opportuni ties, and community for CS teachers. 
    more » « less
  2. Expanding access to and engaging diverse groups of students in high school computer science (CS) classes depends on qualified CS teachers. In this paper, we describe how faculty at our liberal arts college built CS teacher capacity at over 20 school districts through comprehensive college/high school partnerships. The majority of these districts serve rural or high-needs students, groups underrepresented in CS classrooms. The program works primarily with in-service teachers from other disciplines, helping them develop the expertise to teach CS. It is comprehensive in that it includes curricula and professional development for a high school level CS course and a dual-enrollment college level CS course, pathways to CS certification, community events, and opportunities for teacher leadership and collaboration. These modes of engagement are structured so that novice and veteran teachers and college faculty have opportunities to interact in different capacities over several years to create a robust professional learning community. Initial survey results show increasing levels of teacher confidence and sense of belonging, and increasing student confidence in their CS abilities. 
    more » « less
  3. Teacher professional development (PD) is a key factor in enabling teachers to develop mindsets and skills that positively impact students. It is also a key step in building capacity for computer science (CS) education in K-12 schools. Successful CS PD meets primary learning goals and enable teachers to grow their self-efficacy, asset and equity mindset, and interest in teaching CS. As part of a larger study, we conducted a secondary analysis of CS PD evaluation instruments (). We found that instruments across providers were highly dissimilar with limited data collected for measures related to teacher learning, which has implications for future K-12 CS education. Likewise, the instruments were limited in being connected to student learning and academic growth. As a way to enable PD providers to construct measures that align with known impacting factors, we offer recommendations for collecting demographic data and measuring program satisfaction, content knowledge, pedagogical content knowledge, growth and equity mindset, and self-efficacy. We also highlight questions for PD providers to consider when constructing their evaluation, including reflecting community values, the goals of the PD, and how the data collected will be used to continually improve CS programs. 
    more » « less
  4. Benjamin, Paaßen ; Carrie, Demmans Epp (Ed.)
    K-12 Computer Science (CS) education has seen remarkable growth recently, driven by the increasing focus on CS and Computational Thinking (CT) integration. Despite the abundance of Professional development (PD) programs designed to prepare future CS teachers with the required knowledge and skills, there is a lack of research on how teachers' perceptions and attitudes of CS and CT evolve before and after participating in these programs. To address this gap, our exploratory study aims to study the dynamics of pre-and in-service teachers' experiences, attitudes, and perceptions towards CS and CT through their participation in a K-12 CS education micro-credential program. In this study, we employed topic modeling to identify topics that emerged from teachers' written pre- and post-CS autobiographies, conducted statistical analysis to explore how these topics evolve over time and applied regression analysis to investigate the factors influencing these dynamics. We observed a shift in teachers' initial feelings of fear, intimidation, and stress towards confidence, fun, and feeling competent in basic CS, reflecting a positive transformation. Regression analysis revealed that features, such as experienced teacher status and CT conceptual understanding, correlate with participants' evolving views. These observed relationships highlight the micro-credential's role in not only enhancing technical competency but also fostering an adaptive, integrative pedagogical mindset, providing new insights for course design. 
    more » « less
  5. In K-12 education, nearly all efforts focused on expanding computer science education center on the induction of new computer science teachers, with very little attention given to support the ongoing needs of experienced computer science teachers. This panel discussed the needs of experienced CS teachers from a variety of perspectives, including teacher education researchers, professional development leaders, and high school practitioners and teacher facilitators. The panel collectively outlined a research and practice agenda that focuses on supporting, retaining, and further developing experienced teachers through expanded professional development, leadership opportunities, and community for CS teachers. 
    more » « less