skip to main content


Title: Advancing Opportunities for CS Teachers: How To Best Support Professional Development for Experienced Teachers in K-12 CS Education
In K-12 education, nearly all e"orts focused on expanding computer science education center on the induction of new computer science teachers, with very little attention given to support the ongoing needs of experienced computer science teachers. More seasoned teachers bene!t from deepening their content knowledge, peda gogical practices, and knowledge and capacity to provide equitable and inclusive learning experiences that results in students feeling a sense of belonging in computer science. This panel will discuss (a) the needs of experienced CS teachers from a variety of perspectives, including teacher education researchers, professional development leaders, and high school practitioners and teacher facilitator, and (b) collectively outline a research and practice agenda that focuses on supporting, retaining, and further developing experienced teachers through expanded professional development, leadership opportuni ties, and community for CS teachers.  more » « less
Award ID(s):
2031244
PAR ID:
10343379
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
roceedings of the 53rd ACM Technical Symposium on Computer Science Education (SIGCSE 2022).
Volume:
2
Page Range / eLocation ID:
1031 to 1032
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In K-12 education, nearly all efforts focused on expanding computer science education center on the induction of new computer science teachers, with very little attention given to support the ongoing needs of experienced computer science teachers. This panel discussed the needs of experienced CS teachers from a variety of perspectives, including teacher education researchers, professional development leaders, and high school practitioners and teacher facilitators. The panel collectively outlined a research and practice agenda that focuses on supporting, retaining, and further developing experienced teachers through expanded professional development, leadership opportunities, and community for CS teachers. 
    more » « less
  2. null (Ed.)
    Motivation: Recent efforts to expand K-12 computer science education highlight the great need for well-prepared computer science (CS) teachers. Teacher identity theory offers a particular conceptual lens for us to understand computer science teacher preparation and professional development. The emerging literature suggests that teacher identity is central to sustaining motivation, efficacy, job satisfaction, and commitment, and these attributes are crucial in determining teacher retention. While the benefits associated with a strong sense of teacher identity are great, teachers face unique challenges and tensions in developing their professional identity for teaching computer science. Objectives: This exploratory study attempts to operationalize computer science teacher identity through discussing the potential domains, proposing and testing a quantitative instrument for assessing computer science teachers’ professional identity. Method: We first discussed the potential domains of computer science teacher identity based on recent teacher identity literature and considerations on some unique challenges for computer science teachers. Then we proposed the computer science teacher identity scale, which was piloted through a national K-12 computer science teacher survey with 3,540 completed responses. The survey results were analyzed with a series of factor analyses to test the internal structure of the computer science teacher identity scale. Results: Our analyses reveal a four-factor solution for the computer science teacher identity scale, which is composed of CS teaching commitment, CS pedagogical confidence, confidence to engage students, and sense of community/belonging. There were significant differences among the teachers with different computer science teaching experiences. In general, teachers with more computer science teaching experience had higher computer science teacher identity scores on all four factors. Discussion: The four-factor model along with a large national dataset invites a deeper analysis of the data and can provide important benchmarks. Such an instrument can be used to explore developmental patterns in computer science teacher identity, and function as a pedagogical tool to provoke discussion and reflection among teachers about their professional development. This study may also contribute to understanding computer science teachers’ professional development needs and inform efforts to prepare, develop, and retain computer science teachers. 
    more » « less
  3. A grand challenge of the computer science (CS) for all education movement is the preparation of thousands of teachers with high quality, accessible professional development (PD) that has evidence of improving teacher knowledge and pedagogical practices necessary to support the learning needs of diverse groups of students. While regional PD programs can provide in-person learning opportunities, geographic and time constraints often inhibit participation. This article shares findings from an online PD program modified from the existing in-person exploring computer science PD program to provide teachers a facilitated online learning community model to support their first year teaching the course. The findings from this study have implications for future directions in the CS education field, indicating that this model of online PD, heavily based on shared experience among participants, can increase CS teachers’ confidence in adapting and delivering lessons designed to be engaging and accessible to all students. 
    more » « less
  4. Effective professional learning communities (PLCs) are important in supporting teacher learning. This study investigated computer science (CS) teacher leaders’ perspectives on the lessons and the challenges in supporting CS teachers through local PLCs. We purposefully selected ten CSTA chapters and conducted focus group interviews with the chapter leaders between 2020 and 2022. Our findings indicated that these PLCs offered social-emotional support, continual networking opportunities, and rich professional learning resources. Also, they amplified teachers’ voices and supported CS teachers’ professional identity building. To engage CS teachers, the teacher leaders built trust, collaborated with other PLCs or organizations, and set an inclusive PLC culture. These PLCs had challenges in recruitment, leadership development and transition, and building group identity. 
    more » « less
  5. Effective and equitable CS teaching in classrooms is contingent on teachers' high-levels of self-efficacy in CS as well as a robust understanding of equity issues in CS classrooms. To this end, our study examined the influence of a professional development (PD) course, Teaching Exploring Computer Science (TECS), on promoting teacher self-efficacy and equity awareness in CS education. This nine-week PD was offered in a hybrid format, delivering on-line and face-to-face classes to high school teachers across various disciplines who served under-represented students. The participants completed a selfefficacy survey focusing on their ability to teach ECS, both before and after the course. Results showed that teachers' selfefficacy in the content knowledge and pedagogical knowledge of ECS significantly increased as a result of taking the course. We also evaluated teacher's understanding of the equity issues by conducting a content analysis of their reflection essays written at the end of the course. Four major themes emerged from the content analysis, highlighting the impact of equitable practices on CS participation. This research demonstrates the role of a professional development course in promoting teachers' self-efficacy beliefs in teaching CS and their understanding of the equity issues and presents tools for assessing teachers' development in these areas. 
    more » « less