skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Adaptive Filter Technique for Platform Motion Compensation in Unmanned Aerial Vehicle Based Remote Life Sensing Radar
Unmanned Aerial Vehicles (UAVs) have demonstrated efficacy as a platform for remote life sensing in post-disaster search and rescue applications. Radar-assisted UAV respiration motion sensing technology also shows promise yet a significant technological challenge remains associated with interfering motion artefacts from the moving UAV platform. The feasibility of integrating an adaptive filter approach for the compensation of platform motion artefacts is investigated here for the extraction of respiratory motion signatures. A 24-GHz dual radar system was attached to a mechanical mover to emulating motion artefacts while measuring the motion of a robotic breathing phantom designed to reproduce breathing motion patterns. Recursive least square (RLS) and a least mean square (LMS) adaptive filter algorithms were employed to test efficacy for extracting respiratory rate from the motion corrupted breathing signal. Experimental results demonstrated that the RLS performed best with an accuracy of 98.24% for extracting the frequency of the robotic breathing phantom mover. The proposed system has several potential applications including military, humanitarian, and post-disaster search and rescue operations.  more » « less
Award ID(s):
1915738
PAR ID:
10295839
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 50th European Microwave Conference (EuMC)
Page Range / eLocation ID:
937 to 940
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Radar sensing of respiratory motion from unmanned aerial vehicles (UAVs) offers great promise for remote life sensing especially in post-disaster search and rescue applications. One major challenge for this technology is the management of motion artifacts from the moving UAV platform. Prior research has focused on using an adaptive filtering approach which requires installing a secondary radar module for capturing platform motion as a noise reference. This paper investigates the potential of the empirical mode decomposition (EMD) technique for the compensation of platform motion artifacts using only primary radar measurements. Experimental results demonstrated that the proposed EMD approach can extract the fundamental frequency of the breathing motion from the combined breathing and platform motion using only one radar, with an accuracy above 87%. 
    more » « less
  2. One deadly aspect of COVID-19 is that those infected can often be contagious before exhibiting overt symptoms. While methods such as temperature checks and sinus swabs have aided with early detection, the former does not always provide a reliable indicator of COVID-19, and the latter is invasive and requires significant human and material resources to administer. This paper presents a non-invasive COVID-19 early screening system implementable with commercial off-the-shelf wireless communications devices. The system leverages the Doppler radar principle to monitor respiratory-related chest motion and identifies breathing rates that indicate COVID-19 infection. A prototype was developed from software-defined radios (SDRs) designed for 5G NR wireless communications and system performance was evaluated using a robotic mover simulating human breathing, and using actual breathing, resulting in a consistent respiratory rate accuracy better than one breath per minute, exceeding that used in common medical practice.Clinical Relevance-This establishes the potential efficacy of wireless communications based radar for recognizing respiratory disorders such as COVID-19. 
    more » « less
  3. null (Ed.)
    Concurrent respiration monitoring of multiple subjects remains a challenge in microwave Doppler radar-based non-contact physiological sensing technology. Prior research using Independent component analysis with the JADE algorithm has been limited to the separation of respiratory signatures for normal breathing patterns. This paper investigates the feasibility of using the ICA-JADE algorithm with a 24-GHz phase comparison monopulse radar transceiver for separating respiratory signatures from combined mixtures of varied breathing patterns. Normal, fast, and slow breathing pattern variations likely to occur due to physiological activity, and emotional stress were used as a basis for assessing separation robustness. Experimental results showed efficacy for recognition of three different breathing patterns, and isolation of respiratory signatures with an accuracy of100% for normal breathing, 92% for slow breathing, and 83.78% for fast breathing using ICA-JADE. Breathing pattern variations were observed to affect the signal-to-noise ratio through multiple mechanisms, decreasing with an increase in the number of breathing cycles and associated motion artifacts. Additionally, for removing motion artifacts of fast breathing pattern empirical mode decomposition (EMD) is employed, and for slow breathing pattern, increasing the breathing cycles helps to achieve an accuracy of 89.2% and 94.5% respectively. 
    more » « less
  4. Snake robotics is an important research topic with a wide range of applications, including inspection in confined spaces, search-and-rescue, and disaster response. Snake robots are well-suited to these applications because of their versatility and adaptability to unstructured and constrained environments. In this paper, we introduce a soft pneumatic robotic snake that can imitate the capabilities of biological snakes, its soft body can provide flexibility and adaptability to the environment. This paper combines soft mobile robot modeling, proprioceptive feedback control, and motion planning to pave the way for functional soft robotic snake autonomy. We propose a pressure-operated soft robotic snake with a high degree of modularity that makes use of customized embedded flexible curvature sensing. On this platform, we introduce the use of iterative learning control using feedback from the on-board curvature sensors to enable the snake to automatically correct its gait for superior locomotion. We also present a motion planning and trajectory tracking algorithm using an adaptive bounding box, which allows for efficient motion planning that still takes into account the kinematic state of the soft robotic snake. We test this algorithm experimentally, and demonstrate its performance in obstacle avoidance scenarios. 
    more » « less
  5. null (Ed.)
    Unmanned Aerial Vehicles (UAVs) with onboard Doppler radar sensors can be used for health reconnaissance including the remote detection of respiratory patterns associated with COVID-19. While respiratory diagnostics have been demonstrated with radar, the motion of the airborne introduces motion interference. An adaptive filter method is applied here which uses a second radar facing a non-moving surface (ceiling) for a nose cancellation reference signal. Variations in respiratory rate and displacement have been demonstrated which is consistent with the need for detecting tachypnea associated with COVID-19. 
    more » « less