skip to main content


Title: Small spaces, big impacts: contributions of micro-environmental variation to population persistence under climate change
Abstract Individuals within natural populations can experience very different abiotic and biotic conditions across small spatial scales owing to microtopography and other micro-environmental gradients. Ecological and evolutionary studies often ignore the effects of micro-environment on plant population and community dynamics. Here, we explore the extent to which fine-grained variation in abiotic and biotic conditions contributes to within-population variation in trait expression and genetic diversity in natural plant populations. Furthermore, we consider whether benign microhabitats could buffer local populations of some plant species from abiotic stresses imposed by rapid anthropogenic climate change. If microrefugia sustain local populations and communities in the short term, other eco-evolutionary processes, such as gene flow and adaptation, could enhance population stability in the longer term. We caution, however, that local populations may still decline in size as they contract into rare microhabitats and microrefugia. We encourage future research that explicitly examines the role of the micro-environment in maintaining genetic variation within local populations, favouring the evolution of phenotypic plasticity at local scales and enhancing population persistence under global change.  more » « less
Award ID(s):
1655732
NSF-PAR ID:
10295892
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Abdelaziz, Mohamed
Date Published:
Journal Name:
AoB PLANTS
Volume:
12
Issue:
2
ISSN:
2041-2851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The environmental effects shape genetic changes in the individuals within plant populations, which in turn contribute to the enhanced genetic diversity of the population as a whole. Thus, individuals within the same species can acquire and accumulate genetic differences in their genomes depending on their local environment and evolutionary history. IRE1 is a universal endoplasmic reticulum (ER) stress sensor that activates an evolutionarily conserved signalling cascade in response to biotic and abiotic stresses. Here, we selected nine different Arabidopsis accessions along with the reference ecotype Columbia-0, based on their geographical origins and differential endogenous IRE1 expression under steady-state conditions to investigate the natural variation of ER stress responses. We cloned and analysed selected upstream regulatory regions of IRE1a and IRE1b , which revealed differential levels of their inducibility. We also subjected these accessions to an array of biotic and abiotic stresses including heat, ER stress-inducing chemical tunicamycin, phytohormone salicylic acid, and pathogen infection. We measured IRE1-mediated splicing of its evolutionarily conserved downstream client as well as transcript accumulation of ER-resident chaperones and co-chaperones. Collectively, our results illustrate the expression polymorphism of a major plant stress receptor and its relationship with molecular and physiological ER stress sensitivity. 
    more » « less
  2. Abstract

    Seasonal variation in the availability of essential resources is one of the most important drivers of natural selection on the phasing and duration of annually recurring life-cycle events. Shifts in seasonal timing are among the most commonly reported responses to climate change and the capacity of organisms to adjust their timing, either through phenotypic plasticity or evolution, is a critical component of resilience. Despite growing interest in documenting and forecasting the impacts of climate change on phenology, our ability to predict how individuals, populations, and species might alter their seasonal timing in response to their changing environments is constrained by limited knowledge regarding the cues animals use to adjust timing, the endogenous genetic and molecular mechanisms that transduce cues into neural and endocrine signals, and the inherent capacity of animals to alter their timing and phasing within annual cycles. Further, the fitness consequences of phenological responses are often due to biotic interactions within and across trophic levels, rather than being simple outcomes of responses to changes in the abiotic environment. Here, we review the current state of knowledge regarding the mechanisms that control seasonal timing in vertebrates, as well as the ecological and evolutionary consequences of individual, population, and species-level variation in phenological responsiveness. Understanding the causes and consequences of climate-driven phenological shifts requires combining ecological, evolutionary, and mechanistic approaches at individual, populational, and community scales. Thus, to make progress in forecasting phenological responses and demographic consequences, we need to further develop interdisciplinary networks focused on climate change science.

     
    more » « less
  3. Abstract Premise

    Floral scent is a complex trait that mediates many plant–insect interactions, but our understanding of how floral scent variation evolves, either independently or in concert with other traits, remains limited. Assessing variation in floral scent at multiple levels of biological organization and comparing patterns of variation in scent to variation in other floral traits can contribute to our understanding of how scent variation evolves in nature.

    Methods

    We used a greenhouse common garden experiment to investigate variation in floral scent at three scales—within plants, among plants, and among populations—and to determine whether scent, alone or in combination with morphology and rewards, contributes to population differentiation inOenothera cespitosasubsp.marginata. Its range spans most of the biomes in the western United States, such that variation in both the abiotic and biotic environment could contribute to trait variation.

    Results

    Multiple analytical approaches demonstrated substantial variation among and within populations in compound‐specific and total floral scent measures. Overall, populations were differentiated in morphology and reward traits and in scent. Across populations, coupled patterns of variation in linalool, leucine‐derived compounds, and hypanthium length are consistent with a long‐tongued moth pollination syndrome.

    Conclusions

    The considerable variation in floral scent detected within populations suggests that, similar to other floral traits, variation in floral scent may have a heritable genetic component. Differences in patterns of population differentiation in floral scent and in morphology and rewards indicate that these traits may be shaped by different selective pressures.

     
    more » « less
  4. Identifying the environmental correlates of divergence in functional traits between populations can provide insights into the evolutionary mechanisms that generate local adaptation. Here, we assess patterns of population differentiation in expressed venom proteins in Northern Pacific rattlesnakes (Crotalus oreganus) from 13 locations across California. We evaluate the relative importance of major biotic (prey species community composition), abiotic (temperature, precipitation, and elevation) and genetic factors (genetic distance based on RADseq loci) as correlates of population divergence in venom phenotypes. We found that over half of the variation in venom composition is associated with among-population differentiation for genetic and environmental variables, and that this variation occurred along axes defining previously observed functional trade-offs between venom proteins that have neurotoxic, myotoxic and hemorrhagic effects. Surprisingly, genetic differentiation among populations was the best predictor of venom divergence, accounting for 46% of overall variation, whereas differences in prey community composition and abiotic factors explained smaller amounts of variation (23% and 19%, respectively). The association between genetic differentiation and venom composition could be due to an isolation-by-distance effect or, more likely, an isolation-by-environment effect where selection against recent migrants is strong, producing a correlation between neutral genetic differentiation and venom differentiation. Our findings suggest that even coarse estimates of prey community composition can be useful in understanding the selection pressures acting on patterns of venom protein expression. Additionally, our results suggest that factors other than adaptation to spatial variation in prey need to be considered when explaining population divergence in venom. 
    more » « less
  5. Abstract

    Human activities are altering natural ecosystems, leading to widespread environmental change that can vary across spatiotemporal scales, thus creating dynamic, novel conditions at both large and small scales. In highly disturbed aquatic systems, elevated turbidity is one common stressor that alters the sensory environment of fishes and can disrupt communication, including mate choice, driving population‐level shifts in visual communication traits such as nuptial coloration. At a smaller, within‐population scale, we can expect similar adaptive divergence to a heterogeneous visual landscape. Using the cichlid fish,Pseudocrenilabrus multicolor,we investigated within‐population variation in diet and nuptial coloration by sampling fish from microhabitats within a relatively small site (~0.14 km2). These visual microhabitats are affected by different types of human disturbance at a very small scale leading to significant differences in water clarity (i.e. turbidity). We used three, non‐mutually exclusive working hypotheses to test if (1) males in low turbidity invest more in carotenoid‐based coloration (economy of pigments hypothesis), (2) fish from low‐turbidity sites eat more carotenoid‐rich foods (diet hypothesis), and (3) fish are habitat matching. Stomach content analyses revealed relatively high overlap in diet across microhabitats; however, fish from stations with the lowest turbidity consumed relatively more plant material (high in carotenoid content) than fish captured at high‐turbidity stations. Males from clearer waters displayed significantly more carotenoid‐based, red and yellow coloration than fish found in microhabitats with higher turbidity, similar to between‐population color variation in this species. Furthermore, larger fish displayed more carotenoid coloration overall, but there was no difference in mean male size among microhabitats suggesting that fish were not sorting into microhabitats. Our results suggest that within‐population variation in nuptial coloration could be associated with microhabitat heterogeneity in the visual landscape driven by turbidity, a diet with more carotenoid‐rich prey items, or a combination of both.

     
    more » « less