skip to main content

Title: Using Zigzag Persistent Homology to Detect Hopf Bifurcations in Dynamical Systems
Bifurcations in dynamical systems characterize qualitative changes in the system behavior. Therefore, their detection is important because they can signal the transition from normal system operation to imminent failure. In an experimental setting, this transition could lead to incorrect data or damage to the entire experiment. While standard persistent homology has been used in this setting, it usually requires analyzing a collection of persistence diagrams, which in turn drives up the computational cost considerably. Using zigzag persistence, we can capture topological changes in the state space of the dynamical system in only one persistence diagram. Here, we present Bifurcations using ZigZag (BuZZ), a one-step method to study and detect bifurcations using zigzag persistence. The BuZZ method is successfully able to detect this type of behavior in two synthetic examples as well as an example dynamical system.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A combinatorial framework for dynamical systems provides an avenue for connecting classical dynamics with data-oriented, algorithmic methods. Combinatorial vector fields introduced by Forman [R. Forman, 1998; R. Forman, 1998] and their recent generalization to multivector fields [Mrozek, 2017] have provided a starting point for building such a connection. In this work, we strengthen this relationship by placing the Conley index in the persistent homology setting. Conley indices are homological features associated with so-called isolated invariant sets, so a change in the Conley index is a response to perturbation in an underlying multivector field. We show how one can use zigzag persistence to summarize changes to the Conley index, and we develop techniques to capture such changes in the presence of noise. We conclude by developing an algorithm to "track" features in a changing multivector field. 
    more » « less
  2. Xavier Goaoc ; Michael Kerber (Ed.)
    Multivector fields and combinatorial dynamical systems have recently become a subject of interest due to their potential for use in computational methods. In this paper, we develop a method to track an isolated invariant set - a salient feature of a combinatorial dynamical system - across a sequence of multivector fields. This goal is attained by placing the classical notion of the "continuation" of an isolated invariant set in the combinatorial setting. In particular, we give a "Tracking Protocol" that, when given a seed isolated invariant set, finds a canonical continuation of the seed across a sequence of multivector fields. In cases where it is not possible to continue, we show how to use zigzag persistence to track homological features associated with the isolated invariant sets. This construction permits viewing continuation as a special case of persistence. 
    more » « less
  3. null (Ed.)
    Graphs model real-world circumstances in many applications where they may constantly change to capture the dynamic behavior of the phenomena. Topological persistence which provides a set of birth and death pairs for the topological features is one instrument for analyzing such changing graph data. However, standard persistent homology defined over a growing space cannot always capture such a dynamic process unless shrinking with deletions is also allowed. Hence, zigzag persistence which incorporates both insertions and deletions of simplices is more appropriate in such a setting. Unlike standard persistence which admits nearly linear-time algorithms for graphs, such results for the zigzag version improving the general O(m^ω) time complexity are not known, where ω < 2.37286 is the matrix multiplication exponent. In this paper, we propose algorithms for zigzag persistence on graphs which run in near-linear time. Specifically, given a filtration with m additions and deletions on a graph with n vertices and edges, the algorithm for 0-dimension runs in O(mlog² n+mlog m) time and the algorithm for 1-dimension runs in O(mlog⁴ n) time. The algorithm for 0-dimension draws upon another algorithm designed originally for pairing critical points of Morse functions on 2-manifolds. The algorithm for 1-dimension pairs a negative edge with the earliest positive edge so that a 1-cycle containing both edges resides in all intermediate graphs. Both algorithms achieve the claimed time complexity via dynamic graph data structures proposed by Holm et al. In the end, using Alexander duality, we extend the algorithm for 0-dimension to compute the (p-1)-dimensional zigzag persistence for ℝ^p-embedded complexes in O(mlog² n+mlog m+nlog n) time. 
    more » « less
  4. Non-volatile random access memory (NVRAM) offers byte-addressable persistence at speeds comparable to DRAM. However, with caches remaining volatile, automatic cache evictions can reorder updates to memory, potentially leaving persistent memory in an inconsistent state upon a system crash. Flush and fence instructions can be used to force ordering among updates, but are expensive. This has motivated significant work studying how to write correct and efficient persistent programs for NVRAM. In this paper, we present FliT, a C++ library that facilitates writing efficient persistent code. Using the library's default mode makes any linearizable data structure durable with minimal changes to the code. FliT avoids many redundant flush instructions by using a novel algorithm to track dirty cache lines. It also allows for extra optimizations, but achieves good performance even in its default setting. To describe the FliT library's capabilities and guarantees, we define a persistent programming interface, called the P-V Interface, which FliT implements. The P-V Interface captures the expected behavior of code in which some instructions' effects are persisted and some are not. We show that the interface captures the desired semantics of many practical algorithms in the literature. We apply the FliT library to four different persistent data structures, and show that across several workloads, persistence implementations, and data structure sizes, the FliT library always improves operation throughput, by at least 2.1X over a naive implementation in all but one workload. 
    more » « less
  5. This paper is about a class of stochastic reaction networks. Of interest are the dynamics of interconversion among a finite number of substances through reactions that consume some of the substances and produce others. The models we consider are continuous-time Markov jump processes, intended as idealizations of a broad class of biological networks. Reaction rates depend linearly on “enzymes,” which are among the substances produced, and a reaction can occur only in the presence of sufficient upstream material. We present rigorous results for this class of stochastic dynamical systems, the mean-field behaviors of which are described by ordinary differential equations (ODEs). Under the assumption of exponential network growth, we identify certain ODE solutions as being potentially traceable and give conditions on network trajectories which, when rescaled, can with high probability be approximated by these ODE solutions. This leads to a complete characterization of the ω -limit sets of such network solutions (as points or random tori). Dimension reduction is noted depending on the number of enzymes. The second half of this paper is focused on depletion dynamics, i.e., dynamics subsequent to the “phase transition” that occurs when one of the substances becomes unavailable. The picture can be complex, for the depleted substance can be produced intermittently through other network reactions. Treating the model as a slow–fast system, we offer a mean-field description, a first step to understanding what we believe is one of the most natural bifurcations for reaction networks. 
    more » « less