skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tracking Dynamical Features via Continuation and Persistence
Multivector fields and combinatorial dynamical systems have recently become a subject of interest due to their potential for use in computational methods. In this paper, we develop a method to track an isolated invariant set - a salient feature of a combinatorial dynamical system - across a sequence of multivector fields. This goal is attained by placing the classical notion of the "continuation" of an isolated invariant set in the combinatorial setting. In particular, we give a "Tracking Protocol" that, when given a seed isolated invariant set, finds a canonical continuation of the seed across a sequence of multivector fields. In cases where it is not possible to continue, we show how to use zigzag persistence to track homological features associated with the isolated invariant sets. This construction permits viewing continuation as a special case of persistence.  more » « less
Award ID(s):
2049010
PAR ID:
10348048
Author(s) / Creator(s):
; ; ;
Editor(s):
Xavier Goaoc; Michael Kerber
Date Published:
Journal Name:
Leibniz international proceedings in informatics
Volume:
224
ISSN:
1868-8969
Page Range / eLocation ID:
35:1--35:17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A combinatorial framework for dynamical systems provides an avenue for connecting classical dynamics with data-oriented, algorithmic methods. Combinatorial vector fields introduced by Forman [R. Forman, 1998; R. Forman, 1998] and their recent generalization to multivector fields [Mrozek, 2017] have provided a starting point for building such a connection. In this work, we strengthen this relationship by placing the Conley index in the persistent homology setting. Conley indices are homological features associated with so-called isolated invariant sets, so a change in the Conley index is a response to perturbation in an underlying multivector field. We show how one can use zigzag persistence to summarize changes to the Conley index, and we develop techniques to capture such changes in the presence of noise. We conclude by developing an algorithm to "track" features in a changing multivector field. 
    more » « less
  2. Abstract Persistent homology is constrained to purely topological persistence, while multiscale graphs account only for geometric information. This work introduces persistent spectral theory to create a unified low‐dimensional multiscale paradigm for revealing topological persistence and extracting geometric shapes from high‐dimensional datasets. For a point‐cloud dataset, a filtration procedure is used to generate a sequence of chain complexes and associated families of simplicial complexes and chains, from which we construct persistent combinatorial Laplacian matrices. We show that a full set of topological persistence can be completely recovered from the harmonic persistent spectra, that is, the spectra that have zero eigenvalues, of the persistent combinatorial Laplacian matrices. However, non‐harmonic spectra of the Laplacian matrices induced by the filtration offer another powerful tool for data analysis, modeling, and prediction. In this work, fullerene stability is predicted by using both harmonic spectra and non‐harmonic persistent spectra, while the latter spectra are successfully devised to analyze the structure of fullerenes and model protein flexibility, which cannot be straightforwardly extracted from the current persistent homology. The proposed method is found to provide excellent predictions of the protein B‐factors for which current popular biophysical models break down. 
    more » « less
  3. McConkey, Kim (Ed.)
    Abstract Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant’s life history and environmental variability that ultimately influences a population’s ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity. 
    more » « less
  4. Abstract This paper presents an implementation of a homotopy path tracking algorithm for polynomial numerical continuation on a graphical processing unit (GPU). The goal of this algorithm is to track homotopy curves from known roots to the unknown roots of a target polynomial system. The path tracker solves a set of ordinary differential equations to predict the next step and uses a Newton root finder to correct the prediction so the path stays on the homotopy solution curves. In order to benefit from the computational performance of a GPU, we organize the procedure so it is executed as a single instruction set, which means the path tracker has a fixed step size and the corrector has a fixed number iterations. This trade-off between accuracy and GPU computation speed is useful in numerical kinematic synthesis where a large number of solutions must be generated to find a few effective designs. In this paper, we show that our implementation of GPU-based numerical continuation yields 85 effective designs in 63 s, while an existing numerical continuation algorithm yields 455 effective designs in 2 h running on eight threads of a workstation. 
    more » « less
  5. Abstract In this paper we apply Conley index theory in a covering space of an invariant set S , possibly not isolated, in order to describe the dynamics in S . More specifically, we consider the action of the covering translation group in order to define a topological separation of S which distinguishes the connections between the Morse sets within a Morse decomposition of S . The theory developed herein generalizes the classical connection matrix theory, since one obtains enriched information on the connection maps for non-isolated invariant sets, as well as for isolated invariant sets. Moreover, in the case of an infinite cyclic covering induced by a circle-valued Morse function, one proves that the Novikov differential of f is a particular case of the p -connection matrix defined herein. 
    more » « less