skip to main content

Title: Exchange-biased quantum tunnelling of magnetization in a [Mn 3 ] 2 dimer of single-molecule magnets with rare ferromagnetic inter-Mn 3 coupling
A covalently-linked dimer of two single-molecule magnets (SMMs), [Mn 6 O(O 2 CMe) 6 (1,3-ppmd) 3 ](ClO 4 ) 2 , has been synthesized from the reaction of [Mn 3 O(O 2 CMe) 6 (py) 3 ](ClO 4 ) with 1,3-phenylene- bis (pyridin-2-ylmethanone) dioxime (1,3-ppmdH 2 ). It contains two [Mn III 3 O] +7 triangular units linked by three 1,3-ppmd 2− groups into an [Mn 3 ] 2 dimer with D 3 symmetry. Solid-state dc and ac magnetic susceptibility measurements showed that each Mn 3 subunit retains its properties as an SMM with an S = 6 ground state. Magnetization vs. dc field sweeps on a single crystal reveal hysteresis loops below 1.3 K exhibiting exchange-biased quantum tunnelling of magnetization (QTM) steps with a bias field of +0.06 T. This is the first example of a dimer of SMMs showing a positive exchange bias of the QTM steps in the hysteresis loops, and it has therefore been subjected to a detailed analysis. Simulation of the loops determines that each Mn 3 unit is exchange-coupled with its neighbour primarily through the 1,3-ppmd 2− linkers, confirming a weak ferromagnetic inter-Mn 3 interaction of J 12 ≈ +6.5 mK ( Ĥ = more » −2 JŜ i · Ŝ j convention). High-frequency EPR studies of a microcrystalline powder sample enable accurate determination of the zero-field splitting parameters of the uncoupled Mn 3 SMMs, while also confirming the weak exchange interaction between the two SMMs within each [Mn 3 ] 2 dimer. The combined results emphasize the ability of designed covalent linkers to generate inter-SMM coupling of a particular sign and relative magnitude, and thus the ability of such linkers to modulate the quantum physics. As such, this work supports the feasibility of using designed covalent linkers to develop molecular oligomers of SMMs, or other magnetic molecules, as multi-qubit systems and/or other components of new quantum technologies. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Physical Chemistry Chemical Physics
Page Range or eLocation-ID:
8854 to 8867
Sponsoring Org:
National Science Foundation
More Like this
  1. Dy-based single-molecule magnets (SMMs) are of great interest due to their ability to exhibit very large thermal barriers to relaxation and therefore high blocking temperatures. One interesting line of investigation is Dy-encapsulating endohedral clusterfullerenes, in which a carbon cage protects magnetic Dy 3+ ions against decoherence by environmental noise and allows for the stabilization of bonding and magnetic interactions that would be difficult to achieve in other molecular architectures. Recent studies of such materials have focused on clusters with two Dy atoms, since ferromagnetic exchange between Dy atoms is known to reduce the rate of magnetic relaxation via quantum tunneling. Here, two new dysprosium-containing mixed-metallic sulfide clusterfullerenes, DyScS@ C s (6)–C 82 and DyScS@ C 3v (8)–C 82 , have been successfully synthesized, isolated and characterized by mass spectrometry, Vis-NIR, cyclic voltammetry, single crystal X-ray diffractometry, and magnetic measurements. Crystallographic analyses show that the conformation of the encapsulated cluster inside the fullerene cages is notably different than in the Dy 2 X@ C s (6)–C 82 and Dy 2 X@ C 3v (8)–C 82 (X = S, O) analogues. Remarkably, both isomers of DyScS@C 82 show open magnetic hysteresis and slow magnetic relaxation, even at zero field. Their magnetic blockingmore »temperatures are around 7.3 K, which are among the highest values reported for clusterfullerene SMMs. The SMM properties of DyScS@C 82 far outperform those of the dilanthanide analogues Dy 2 S@C 82 , in contrast to the trend observed for carbide and nitride Dy clusterfullerenes.« less
  2. Iron-based extended metal atom chains (EMACs) are potentially high-spin molecules with axial magnetic anisotropy and thus candidate single-molecule magnets (SMMs). We herein compare the tetrairon( ii ), halide-capped complexes [Fe 4 (tpda) 3 Cl 2 ] ( 1Cl ) and [Fe 4 (tpda) 3 Br 2 ] ( 1Br ), obtained by reacting iron( ii ) dihalides with [Fe 2 (Mes) 4 ] and N 2 , N 6 -di(pyridin-2-yl)pyridine-2,6-diamine (H 2 tpda) in toluene, under strictly anhydrous and anaerobic conditions (HMes = mesitylene). Detailed structural, electrochemical and Mössbauer data are presented along with direct-current (DC) and alternating-current (AC) magnetic characterizations. DC measurements revealed similar static magnetic properties for the two derivatives, with χ M T at room temperature above that for independent spin carriers, but much lower at low temperature. The electronic structure of the iron( ii ) ions in each derivative was explored by ab initio (CASSCF-NEVPT2-SO) calculations, which showed that the main magnetic axis of all metals is directed close to the axis of the chain. The outer metals, Fe1 and Fe4, have an easy-axis magnetic anisotropy ( D = −11 to −19 cm −1 , | E / D | = 0.05–0.18), while the internal metals,more »Fe2 and Fe3, possess weaker hard-axis anisotropy ( D = 8–10 cm −1 , | E / D | = 0.06–0.21). These single-ion parameters were held constant in the fitting of DC magnetic data, which revealed ferromagnetic Fe1–Fe2 and Fe3–Fe4 interactions and antiferromagnetic Fe2–Fe3 coupling. The competition between super-exchange interactions and the large, noncollinear anisotropies at metal sites results in a weakly magnetic non-Kramers doublet ground state. This explains the SMM behavior displayed by both derivatives in the AC susceptibility data, with slow magnetic relaxation in 1Br being observable even in zero static field.« less
  3. Reaction of FeBr 2 with 1.5 equiv. of LiNCPh 2 and 2 equiv. of Zn, in THF, results in the formation of the tetrametallic iron ketimide cluster [Fe 4 (NCPh 2 ) 6 ] ( 1 ) in moderate yield. Formally, two Fe centers in 1 are Fe( i ) and two are Fe( ii ); however, Mössbauer spectroscopy and SQUID magnetometry suggests that the [Fe 4 ] 6+ core of 1 exhibits complete valence electron delocalization, with a thermally-persistent spin ground state of S = 7. AC and DC SQUID magnetometry reveals the presence of slow magnetic relaxation in 1 , indicative of single-molecule magnetic (SMM) behaviour with a relaxation barrier of U eff = 29 cm −1 . Remarkably, very little quantum tunnelling or Raman relaxation is observed down to 1.8 K, which leads to an open hysteresis loop and long relaxation times (up to 34 s at 1.8 K and zero field and 440 s at 1.67 kOe). These results suggest that transition metal ketimide clusters represent a promising avenue to create long-lifetime single molecule magnets.
  4. Interest in O 2 -dependent aliphatic carbon–carbon (C–C) bond cleavage reactions of first row divalent metal diketonate complexes stems from the desire to further understand the reaction pathways of enzymes such as DKE1 and to extract information to develop applications in organic synthesis. A recent report of O 2 -dependent aliphatic C–C bond cleavage at ambient temperature in Ni( ii ) diketonate complexes supported by a tridentate nitrogen donor ligand [(MBBP)Ni(PhC(O)CHC(O)Ph)]Cl ( 7-Cl ; MBBP = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) in the presence of NEt 3 spurred our interest in further examining the chemistry of such complexes. A series of new TERPY-ligated Ni( ii ) diketonate complexes of the general formula [(TERPY)Ni(R 2 -1,3-diketonate)]ClO 4 ( 1 : R = CH 3 ; 2 : R = C(CH 3 ) 3 ; 3 : R = Ph) was prepared under air and characterized using single crystal X-ray crystallography, elemental analysis, 1 H NMR, ESI-MS, FTIR, and UV-vis. Analysis of the reaction mixtures in which these complexes were generated using 1 H NMR and ESI-MS revealed the presence of both the desired diketonate complex and the bis-TERPY derivative [(TERPY) 2 Ni](ClO 4 ) 2 ( 4 ). Through selective crystallization 1–3 were isolated inmore »analytically pure form. Analysis of reaction mixtures leading to the formation of the MBBP analogs [(MBBP)Ni(R 2 -1,3-diketonate)]X (X = ClO 4 : 5 : R = CH 3 ; 6 : R = C(CH 3 ) 3 ; 7-ClO4 : R = Ph; X = Cl: 7-Cl : R = Ph) using 1 H NMR and ESI-MS revealed the presence of [(MBBP) 2 Ni](ClO 4 ) 2 ( 8 ). Analysis of aerobic acetonitrile solutions of analytically pure 1–3 , 5 and 6 containing NEt 3 and in some cases H 2 O using 1 H NMR and UV-vis revealed evidence for the formation of additional bis-ligand complexes ( 4 and 8 ) but suggested no oxidative diketonate cleavage reactivity. Analysis of the organic products generated from 3 , 7-ClO4 and 7-Cl revealed unaltered dibenzoylmethane. Our results therefore indicate that N 3 -ligated Ni( ii ) complexes of unsubstituted diketonate ligands do not exhibit O 2 -dependent aliphatic C–C bond clevage at room temperature, including in the presence of NEt 3 and/or H 2 O.« less
  5. Lanthanide metallocenophanes are an intriguing class of organometallic complexes that feature rare six-coordinate trigonal prismatic coordination environments of 4f elements with close intramolecular proximity to transition metal ions. Herein, we present a systematic study of the structural and magnetic properties of the ferrocenophanes, [LnFc 3 (THF) 2 Li 2 ] − , of the late trivalent lanthanide ions (Ln = Gd ( 1 ), Ho ( 2 ), Er ( 3 ), Tm ( 4 ), Yb ( 5 ), Lu ( 6 )). One major structural trend within this class of complexes is the increasing diferrocenyl (Fc 2− ) average twist angle with decreasing ionic radius ( r ion ) of the central Ln ion, resulting in the largest average Fc 2− twist angles for the Lu 3+ compound 6 . Such high sensitivity of the twist angle to changes in r ion is unique to the here presented ferrocenophane complexes and likely due to the large trigonal plane separation enforced by the ligand (>3.2 Å). This geometry also allows the non-Kramers ion Ho 3+ to exhibit slow magnetic relaxation in the absence of applied dc fields, rendering compound 2 a rare example of a Ho-based single-molecule magnet (SMM)more »with barriers to magnetization reversal ( U ) of 110–131 cm −1 . In contrast, compounds featuring Ln ions with prolate electron density ( 3–5 ) don't show slow magnetization dynamics under the same conditions. The observed trends in magnetic properties of 2–5 are supported by state-of-the-art ab initio calculations. Finally, the magneto-structural relationship of the trigonal prismatic Ho-[1]ferrocenophane motif was further investigated by axial ligand (THF in 2 ) exchange to yield [HoFc 3 (THF*) 2 Li 2 ] − ( 2-THF* ) and [HoFc 3 (py) 2 Li 2 ] − ( 2-py ) motifs. We find that larger average Fc 2− twist angles (in 2-THF* and 2-py as compared to in 2 ) result in faster magnetic relaxation times at a given temperature.« less