Rigid automorphisms of linking systems
Abstract A rigid automorphism of a linking system is an automorphism that restricts to the identity on the Sylow subgroup. A rigid inner automorphism is conjugation by an element in the center of the Sylow subgroup. At odd primes, it is known that each rigid automorphism of a centric linking system is inner. We prove that the group of rigid outer automorphisms of a linking system at the prime $$2$$ is elementary abelian and that it splits over the subgroup of rigid inner automorphisms. In a second result, we show that if an automorphism of a finite group G restricts to the identity on the centric linking system for G , then it is of $p'$ -order modulo the group of inner automorphisms, provided G has no nontrivial normal $p'$ -subgroups. We present two applications of this last result, one to tame fusion systems.
more »
« less
- Award ID(s):
- 1902152
- PAR ID:
- 10296151
- Date Published:
- Journal Name:
- Forum of Mathematics, Sigma
- Volume:
- 9
- ISSN:
- 2050-5094
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The transporter systems of Oliver and Ventura and the localities of Chermak are classes of algebraic structures that model the ‐local structures of finite groups. Other than the transporter categories and localities of finite groups, important examples include centric, quasicentric, and subcentric linking systems for saturated fusion systems. These examples are, however, not defined in general on the full collection of subgroups of the Sylow group. We study here punctured groups , a short name for transporter systems or localities on the collection of nonidentity subgroups of a finite ‐group. As an application of the existence of a punctured group, we show that the subgroup homology decomposition on the centric collection is sharp for the fusion system. We also prove a Signalizer Functor Theorem for punctured groups and use it to show that the smallest Benson–Solomon exotic fusion system at the prime 2 has a punctured group, while the others do not. As for exotic fusion systems at odd primes , we survey several classes and find that in almost all cases, either the subcentric linking system is a punctured group for the system, or the system has no punctured group because the normalizer of some subgroup of order is exotic. Finally, we classify punctured groups restricting to the centric linking system for certain fusion systems on extraspecial ‐groups of order .more » « less
-
Navarro has conjectured a necessary and sufficient condition for a finite group G to have a self-normalizing Sylow 2-subgroup, which is given in terms of the ordinary irreducible characters of G. In a previous article, Schaeffer Fry has reduced the proof of this conjecture to showing that certain related statements hold for simple groups. In this article, we describe the action of Galois automorphisms on the Howlett-Lehrer parametrization of Harish-Chandra induced characters. We use this to complete the proof of the conjecture by showing that the remaining simple groups satisfy the required conditions.more » « less
-
Abstract To any free group automorphism, we associate a real pretree with several nice properties. First, it has a rigid/non-nesting action of the free group with trivial arc stabilizers. Secondly, there is an expanding pretree-automorphism of the real pretree that represents the free group automorphism. Finally and crucially, the loxodromic elements are exactly those whose (conjugacy class) length grows exponentially under iteration of the automorphism; thus, the action on the real pretree is able to detect the growth type of an element. This construction extends the theory of metric trees that has been used to study free group automorphisms. The new idea is that one can equivariantly blow up an isometric action on a real tree with respect to other real trees and get a rigid action on a treelike structure known as a real pretree. Topology plays no role in this construction as all the work is done in the language of pretrees (intervals).more » « less
-
null (Ed.)Abstract: For a group G, we define a graph Delta (G) by letting G^#=G\{1} be the set of vertices and by drawing an edge between distinct elements x,y in G^# if and only if the subgroup is cyclic. Recall that a Z-group is a group where every Sylow subgroup is cyclic. In this short note, we investigate Delta (G) for a Z-group G.more » « less
An official website of the United States government

