skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Centers of Sylow subgroups and automorphisms
Suppose that p is an odd prime and G is a finite group having no normal non-trivial p′-subgroup. We show that if a is an automorphism of G of p-power order centralizing a Sylow p-group of G, then a is inner.  more » « less
Award ID(s):
1902152
PAR ID:
10197799
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Israel Journal of Mathematics
ISSN:
0021-2172
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Suppose that $$\mathbf{G}$$ is a connected reductive group over a finite extension $$F/\mathbb{Q}_{p}$$ and that $$C$$ is a field of characteristic  $$p$$ . We prove that the group $$\mathbf{G}(F)$$ admits an irreducible admissible supercuspidal, or equivalently supersingular, representation over  $$C$$ . 
    more » « less
  2. null (Ed.)
    Abstract: For a group G, we define a graph Delta (G) by letting G^#=G\{1} be the set of vertices and by drawing an edge between distinct elements x,y in G^# if and only if the subgroup is cyclic. Recall that a Z-group is a group where every Sylow subgroup is cyclic. In this short note, we investigate Delta (G) for a Z-group G. 
    more » « less
  3. null (Ed.)
    Abstract A rigid automorphism of a linking system is an automorphism that restricts to the identity on the Sylow subgroup. A rigid inner automorphism is conjugation by an element in the center of the Sylow subgroup. At odd primes, it is known that each rigid automorphism of a centric linking system is inner. We prove that the group of rigid outer automorphisms of a linking system at the prime $$2$$ is elementary abelian and that it splits over the subgroup of rigid inner automorphisms. In a second result, we show that if an automorphism of a finite group G restricts to the identity on the centric linking system for G , then it is of $p'$ -order modulo the group of inner automorphisms, provided G has no nontrivial normal $p'$ -subgroups. We present two applications of this last result, one to tame fusion systems. 
    more » « less
  4. Given a representation of a finite group G over some commutative base ring k, the cofixed space is the largest quotient of the representation on which the group acts trivially. If G acts by k-algebra automorphisms, then the cofixed space is a module over the ring of G-invariants. When the order of G is not invertible in the base ring, little is known about this module structure. We study the cofixed space in the case that G is the symmetric group on n letters acting on a polynomial ring by permuting its variables. When k has characteristic 0, the cofixed space is isomorphic to an ideal of the ring of symmetric polynomials in n variables. Localizing k at a prime integer p while letting n vary reveals striking behavior in these ideals. As n grows, the ideals stay stable in a sense, then jump in complexity each time n reaches a multiple of p. 
    more » « less
  5. Let g be a symmetrisable Kac-Moody algebra and V an integrable g-module in category O. We show that the monodromy of the (normally ordered) rational Casimir connection on V can be made equivariant with respect to the Weyl group W of g, and therefore defines an action of the braid group BW on V. We then prove that this action is canonically equivalent to the quantum Weyl group action of BW on a quantum deformation of V, that is an integrable, category O module V over the quantum group Uhg such that V/hV is isomorphic to V. This extends a result of the second author which is valid for g semisimple. 
    more » « less