skip to main content


Title: Besov Function Approximation and Binary Classification on Low-Dimensional Manifolds Using Convolutional Residual Networks
Most of existing statistical theories on deep neural networks have sample complexities cursed by the data dimension and therefore cannot well explain the empirical success of deep learning on high-dimensional data. To bridge this gap, we propose to exploit the low-dimensional structures of the real world datasets and establish theoretical guarantees of convolutional residual networks (ConvResNet) in terms of function approximation and statistical recovery for binary classification problem. Specifically, given the data lying on a 𝑑-dimensional manifold isometrically embedded in ℝ^𝐷, we prove that if the network architecture is properly chosen, ConvResNets can (1) approximate Besov functions on manifolds with arbitrary accuracy, and (2) learn a classifier by minimizing the empirical logistic risk, which gives an excess risk in the order of 𝑛−2s/(2s+d), where 𝑠 is a smoothness parameter. This implies that the sample complexity depends on the intrinsic dimension 𝑑, instead of the data dimension 𝐷. Our results demonstrate that ConvResNets are adaptive to low-dimensional structures of data sets.  more » « less
Award ID(s):
1818751
NSF-PAR ID:
10296154
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep generative models have experienced great empirical successes in distribution learning. Many existing experiments have demonstrated that deep generative networks can efficiently generate high-dimensional complex data from a low-dimensional easy-to-sample distribution. However, this phenomenon can not be justified by existing theories. The widely held manifold hypothesis speculates that real-world data sets, such as natural images and signals, exhibit low-dimensional geometric structures. In this paper, we take such low-dimensional data structures into consideration by assuming that data distributions are supported on a low-dimensional manifold. We prove approximation and estimation theories of deep generative networks for estimating distributions on a low-dimensional manifold under the Wasserstein-1 loss. We show that the Wasserstein-1 loss converges to zero at a fast rate depending on the intrinsic dimension instead of the ambient data dimension. Our theory leverages the low-dimensional geometric structures in data sets and justifies the practical power of deep generative models. We require no smoothness assumptions on the data distribution which is desirable in practice. 
    more » « less
  2. Deep neural networks have revolutionized many real world applications, due to their flexibility in data fitting and accurate predictions for unseen data. A line of research reveals that neural networks can approximate certain classes of functions with an arbitrary accuracy, while the size of the network scales exponentially with respect to the data dimension. Empirical results, however, suggest that networks of moderate size already yield appealing performance. To explain such a gap, a common belief is that many data sets exhibit low dimensional structures, and can be modeled as samples near a low dimensional manifold. In this paper, we prove that neural networks can efficiently approximate functions supported on low dimensional manifolds. The network size scales exponentially in the approximation error, with an exponent depending on the intrinsic dimension of the data and the smoothness of the function. Our result shows that exploiting low dimensional data structures can greatly enhance the efficiency in function approximation by neural networks. We also implement a sub-network that assigns input data to their corresponding local neighborhoods, which may be of independent interest. 
    more » « less
  3. Deep neural networks have revolutionized many real world applications, due to their flexibility in data fitting and accurate predictions for unseen data. A line of research reveals that neural networks can approximate certain classes of functions with an arbitrary accuracy, while the size of the network scales exponentially with respect to the data dimension. Empirical results, however, suggest that networks of moderate size already yield appealing performance. To explain such a gap, a common belief is that many data sets exhibit low dimensional structures, and can be modeled as samples near a low dimensional manifold. In this paper, we prove that neural networks can efficiently approximate functions supported on low dimensional manifolds. The network size scales exponentially in the approximation error, with an exponent depending on the intrinsic dimension of the data and the smoothness of the function. Our result shows that exploiting low dimensional data structures can greatly enhance the efficiency in function approximation by neural networks. We also implement a sub-network that assigns input data to their corresponding local neighborhoods, which may be of independent interest. 
    more » « less
  4. Deep neural networks have revolutionized many real world applications, due to their flexibility in data fitting and accurate predictions for unseen data. A line of research reveals that neural networks can approximate certain classes of functions with an arbitrary accuracy, while the size of the network scales exponentially with respect to the data dimension. Empirical results, however, suggest that networks of moderate size already yield appealing performance. To explain such a gap, a common belief is that many data sets exhibit low dimensional structures, and can be modeled as samples near a low dimensional manifold. In this paper, we prove that neural networks can efficiently approximate functions supported on low dimensional manifolds. The network size scales exponentially in the approximation error, with an exponent depending on the intrinsic dimension of the data and the smoothness of the function. Our result shows that exploiting low dimensional data structures can greatly enhance the efficiency in function approximation by neural networks. We also implement a sub-network that assigns input data to their corresponding local neighborhoods, which may be of independent interest. 
    more » « less
  5. Abstract

    Two-sample tests are important areas aiming to determine whether two collections of observations follow the same distribution or not. We propose two-sample tests based on integral probability metric (IPM) for high-dimensional samples supported on a low-dimensional manifold. We characterize the properties of proposed tests with respect to the number of samples $n$ and the structure of the manifold with intrinsic dimension $d$. When an atlas is given, we propose a two-step test to identify the difference between general distributions, which achieves the type-II risk in the order of $n^{-1/\max \{d,2\}}$. When an atlas is not given, we propose Hölder IPM test that applies for data distributions with $(s,\beta )$-Hölder densities, which achieves the type-II risk in the order of $n^{-(s+\beta )/d}$. To mitigate the heavy computation burden of evaluating the Hölder IPM, we approximate the Hölder function class using neural networks. Based on the approximation theory of neural networks, we show that the neural network IPM test has the type-II risk in the order of $n^{-(s+\beta )/d}$, which is in the same order of the type-II risk as the Hölder IPM test. Our proposed tests are adaptive to low-dimensional geometric structure because their performance crucially depends on the intrinsic dimension instead of the data dimension.

     
    more » « less