skip to main content


Title: B 48 − : a bilayer boron cluster
Size-selected negatively-charged boron clusters (B n − ) have been found to be planar or quasi-planar in a wide size range. Even though cage structures emerged as the global minimum at B 39 − , the global minimum of B 40 − was in fact planar. Only in the neutral form did the B 40 borospherene become the global minimum. How the structures of larger boron clusters evolve is of immense interest. Here we report the observation of a bilayer B 48 − cluster using photoelectron spectroscopy and first-principles calculations. The photoelectron spectra of B 48 − exhibit two well-resolved features at low binding energies, which are used as electronic signatures to compare with theoretical calculations. Global minimum searches and theoretical calculations indicate that both the B 48 − anion and the B 48 neutral possess a bilayer-type structure with D 2h symmetry. The simulated spectrum of the D 2h B 48 − agrees well with the experimental spectral features, confirming the bilayer global minimum structure. The bilayer B 48 −/0 clusters are found to be highly stable with strong interlayer covalent bonding, revealing a new structural type for size-selected boron clusters. The current study shows the structural diversity of boron nanoclusters and provides experimental evidence for the viability of bilayer borophenes.  more » « less
Award ID(s):
1763380
NSF-PAR ID:
10296221
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
13
Issue:
6
ISSN:
2040-3364
Page Range / eLocation ID:
3868 to 3876
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since the discovery of the B 40 borospherene, research interests have been directed to the structural evolution of even larger boron clusters. An interesting question concerns if the borospherene cages persist in larger boron clusters like the fullerenes. Here we report a photoelectron spectroscopy (PES) and computational study on the structures and bonding of B 41 − and B 42 − , the largest boron clusters characterized experimentally thus far. The PE spectra of both clusters display broad and complicated features, suggesting the existence of multiple low-lying isomers. Global minimum searches for B 41 − reveal three low-lying isomers ( I–III ), which are all related to the planar B 40 − structure. Isomer II ( C s , 1 A′) possessing a double hexagonal vacancy is found to agree well with the experiment, while isomers I ( C s , 3 A′′) and III ( C s , 1 A′) both with a single hexagonal vacancy are also present as minor isomers in the experiment. The potential landscape of B 42 − is found to be much more complicated with numerous low-lying isomers ( VII–XII ). The quasi-planar structure VIII ( C 1 , 2 A) containing a double hexagonal vacancy is found to make major contributions to the observed PE spectrum of B 42 − , while the other low-lying isomers may also be present to give rise to a complicated spectral pattern. Chemical bonding analyses show isomer II of B 41 − ( C s , 1 A′) and isomer VIII of B 42 − ( C 1 , 2 A) are π aromatic, analogous to that in the polycyclic aromatic hydrocarbon C 27 H 13 + ( C 2v , 1 A 1 ). Borospherene cage isomers are also found for both B 41 − and B 42 − in the global minimum searches, but they are much higher energy isomers. 
    more » « less
  2. Borophenes are atom-thin boron layers that can be grown on coinage metal substrates and have become an important class of synthetic 2D nanomaterials. The interactions between boron and substrates are critical to understand the growth mechanisms of borophenes. Here, we report an investigation of copper-boron interactions in the Cu 2 B 8 − bimetallic cluster using photoelectron spectroscopy and quantum chemical calculations. Well-resolved photoelectron spectra are obtained at several photon energies and are combined with theoretical calculations to elucidate the structures and bonding of Cu 2 B 8 − . Global minimum searches reveal that Cu 2 B 8 − consists of a Cu 2 dimer atop a B 8 molecular wheel with a long Cu–Cu bond length close to that in Cu 2 + . Chemical bonding analyses indicate that there is clear charge transfer from Cu 2 to B 8 , and the Cu 2 B 8 − cluster can be viewed as a [Cu 2 + ]-borozene complex, [Cu 2 + ][B 8 2– ]. In the neutral cluster, no Cu–Cu bond exists and Cu 2 B 8 consists of two Cu + centers interacting with doubly aromatic B 8 2− borozene. The charge transfer interactions between Cu and boron in the Cu 2 B 8 − cluster are analogous to charge transfer from the copper substrate to the first borophene layer recently reported to be critical in the growth of bilayer borophenes on a Cu(111) substrate. 
    more » « less
  3. Because of their interesting structures and bonding and potentials as motifs for new nanomaterials, size-selected boron clusters have received tremendous interest in recent years. In particular, boron cluster anions (B n − ) have allowed systematic joint photoelectron spectroscopy and theoretical studies, revealing predominantly two-dimensional structures. The discovery of the planar B 36 cluster with a central hexagonal vacancy provided the first experimental evidence of the viability of 2D borons, giving rise to the concept of borophene. The finding of the B 40 cage cluster unveiled the existence of fullerene-like boron clusters (borospherenes). Metal-doping can significantly extend the structural and bonding repertoire of boron clusters. Main-group metals interact with boron through s/p orbitals, resulting in either half-sandwich-type structures or substitutional structures. Transition metals are more versatile in bonding with boron, forming a variety of structures including half-sandwich structures, metal-centered boron rings, and metal-centered boron drums. Transition metal atoms have also been found to be able to be doped into the plane of 2D boron clusters, suggesting the possibility of metalloborophenes. Early studies of di-metal-doped boron clusters focused on gold, revealing ladder-like boron structures with terminal gold atoms. Recent observations of highly symmetric Ta 2 B 6 − and Ln 2 B n − ( n = 7–9) clusters have established a family of inverse sandwich structures with monocyclic boron rings stabilized by two metal atoms. The study of size-selected boron and doped-boron clusters is a burgeoning field of research. Further investigations will continue to reveal more interesting structures and novel chemical bonding, paving the foundation for new boron-based chemical compounds and nanomaterials. 
    more » « less
  4. Abstract

    In a high‐resolution photoelectron imaging and theoretical study of the IrB3cluster, two isomers were observed experimentally with electron affinities (EAs) of 1.3147(8) and 1.937(4) eV. Quantum calculations revealed two nearly degenerate isomers competing for the global minimum, both with a B3ring coordinated with the Ir atom. The isomer with the higher EA consists of a B3ring with a bridge‐bonded Ir atom (Cs,2A′), and the second isomer features a tetrahedral structure (C3v,2A1). The neutral tetrahedral structure was predicted to be considerably more stable than all other isomers. Chemical bonding analysis showed that the neutralC3visomer involves significant covalent Ir−B bonding and weak ionic bonding with charge transfer from B3to Ir, and can be viewed as an Ir–(η3‐B3+) complex. This study provides the first example of a boron‐to‐metal charge‐transfer complex and evidence of a π‐aromatic B3+ring coordinated to a transition metal.

     
    more » « less
  5. Abstract

    In a high‐resolution photoelectron imaging and theoretical study of the IrB3cluster, two isomers were observed experimentally with electron affinities (EAs) of 1.3147(8) and 1.937(4) eV. Quantum calculations revealed two nearly degenerate isomers competing for the global minimum, both with a B3ring coordinated with the Ir atom. The isomer with the higher EA consists of a B3ring with a bridge‐bonded Ir atom (Cs,2A′), and the second isomer features a tetrahedral structure (C3v,2A1). The neutral tetrahedral structure was predicted to be considerably more stable than all other isomers. Chemical bonding analysis showed that the neutralC3visomer involves significant covalent Ir−B bonding and weak ionic bonding with charge transfer from B3to Ir, and can be viewed as an Ir–(η3‐B3+) complex. This study provides the first example of a boron‐to‐metal charge‐transfer complex and evidence of a π‐aromatic B3+ring coordinated to a transition metal.

     
    more » « less