- Award ID(s):
- 1763380
- Publication Date:
- NSF-PAR ID:
- 10296221
- Journal Name:
- Nanoscale
- Volume:
- 13
- Issue:
- 6
- Page Range or eLocation-ID:
- 3868 to 3876
- ISSN:
- 2040-3364
- Sponsoring Org:
- National Science Foundation
More Like this
-
Since the discovery of the B 40 borospherene, research interests have been directed to the structural evolution of even larger boron clusters. An interesting question concerns if the borospherene cages persist in larger boron clusters like the fullerenes. Here we report a photoelectron spectroscopy (PES) and computational study on the structures and bonding of B 41 − and B 42 − , the largest boron clusters characterized experimentally thus far. The PE spectra of both clusters display broad and complicated features, suggesting the existence of multiple low-lying isomers. Global minimum searches for B 41 − reveal three low-lying isomers ( I–III ), which are all related to the planar B 40 − structure. Isomer II ( C s , 1 A′) possessing a double hexagonal vacancy is found to agree well with the experiment, while isomers I ( C s , 3 A′′) and III ( C s , 1 A′) both with a single hexagonal vacancy are also present as minor isomers in the experiment. The potential landscape of B 42 − is found to be much more complicated with numerous low-lying isomers ( VII–XII ). The quasi-planar structure VIII ( C 1 , 2 A) containing a doublemore »
-
Because of their interesting structures and bonding and potentials as motifs for new nanomaterials, size-selected boron clusters have received tremendous interest in recent years. In particular, boron cluster anions (B n − ) have allowed systematic joint photoelectron spectroscopy and theoretical studies, revealing predominantly two-dimensional structures. The discovery of the planar B 36 cluster with a central hexagonal vacancy provided the first experimental evidence of the viability of 2D borons, giving rise to the concept of borophene. The finding of the B 40 cage cluster unveiled the existence of fullerene-like boron clusters (borospherenes). Metal-doping can significantly extend the structural and bonding repertoire of boron clusters. Main-group metals interact with boron through s/p orbitals, resulting in either half-sandwich-type structures or substitutional structures. Transition metals are more versatile in bonding with boron, forming a variety of structures including half-sandwich structures, metal-centered boron rings, and metal-centered boron drums. Transition metal atoms have also been found to be able to be doped into the plane of 2D boron clusters, suggesting the possibility of metalloborophenes. Early studies of di-metal-doped boron clusters focused on gold, revealing ladder-like boron structures with terminal gold atoms. Recent observations of highly symmetric Ta 2 B 6 − and Ln 2more »
-
Chirality plays an important role in nature. Nanoclusters can also exhibit chiral properties. We report herein a joint experimental and theoretical investigation on the geometric and electronic structures of B 31 − and B 32 − clusters, using photoelectron spectroscopy in combination with first-principles calculations. Two degenerate quasi-planar chiral C 1 enantiomers ( I and II , 1 A) with a central hexagonal vacancy are identified as the global minima of B 31 − . For B 32 − , two degenerate boat-like quasi-planar chiral C 2 structures ( VI and VII , 2 A) with a central hexagonal vacancy are also found as the global minima, with a low-lying chair-like C i B 32 − ( VIII , 2 A u ) also present in the experiment as a minor isomer. The chiral conversions in quasi-planar B 31 − and B 32 − clusters are investigated and relatively low barriers are found due to the high flexibility of these monolayer clusters, which feature multiple delocalized σ and π bonds over buckled molecular surfaces.
-
Boron displays many unusual structural and bonding properties due to its electron deficiency. Here we show that a boron atom in a boron monoxide cluster (B 9 O − ) exhibits transition-metal-like properties. Temperature-dependent photoelectron spectroscopy provided evidence of the existence of two isomers for B 9 O − : the main isomer has an adiabatic detachment energy (ADE) of 4.19 eV and a higher energy isomer with an ADE of 3.59 eV. The global minimum of B 9 O − is found surprisingly to be an umbrella-like structure ( C 6v , 1 A 1 ) and its simulated spectrum agrees well with that of the main isomer observed. A low-lying isomer ( C s , 1 A′) consisting of a BO unit bonded to a disk-like B 8 cluster agrees well with the 3.59 eV ADE species. The unexpected umbrella-like global minimum of B 9 O − can be viewed as a central boron atom coordinated by a η 7 -B 7 ligand on one side and a BO ligand on the other side, [(η 7 -B 7 )-B-BO] − . The central B atom is found to share its valence electrons with the B 7 unit tomore »
-
Abstract Lanthanide (Ln) elements are generally found in the oxidation state +II or +III, and a few examples of +IV and +V compounds have also been reported. In contrast, monovalent Ln(+I) complexes remain scarce. Here we combine photoelectron spectroscopy and theoretical calculations to study Ln-doped octa-boron clusters (LnB8−, Ln = La, Pr, Tb, Tm, Yb) with the rare +I oxidation state. The global minimum of the LnB8−species changes from
C stoC 7v symmetry accompanied by an oxidation-state change from +III to +I from the early to late lanthanides. All theC 7v -LnB8−clusters can be viewed as a monovalent Ln(I) coordinated by a η8-B82−doubly aromatic ligand. The B73−, B82−, and B9−series of aromatic boron clusters are analogous to the classical aromatic hydrocarbon molecules, C5H5−, C6H6, and C7H7+, respectively, with similar trends of size and charge state and they are named collectively as “borozenes”. Lanthanides with variable oxidation states and magnetic properties may be formed with different borozenes.