Competencies (knowledge, skills, and dispositions) enable employers and educators to speak a common language regarding what computing graduates are expected to demonstrate on the job. This study focuses on competencies required by managers in the computing industry, based on semi-structured interviews of ten individuals in managerial roles, such as directors, project managers, and product managers with prior experience in computing-related roles. Constant Comparative for Naturalistic Inquiry was used to analyze the data. The most frequently discussed managerial skills included leadership, project management, hiring and evaluating candidates, and mentorship. In addition, professional skills such as communication, problem-solving, and lifelong learning were mentioned, along with essential dispositions that support the development of these skills, e.g., collaborative mindset, lifelong learning orientation, and self-regulation. Participants also emphasized the need to make judgments, build relationships, and collaborate within or outside their team. Career readiness in the computing industry is not limited to entry-level jobs; professionals should have the opportunity to navigate their preferred career path—whether they aspire to move down a technical or managerial path. This study can contribute to both students’ and educators’ understanding of the managerial career path and what types of competencies and experiences should be included in computing education programs to set them up for success across their career path. Implications for pedagogical approaches will also be discussed.
more »
« less
Prevalent Technical Leadership Styles and Impact on Early Engineering Careers
In this study, the authors explored prevalent leadership styles found in industry from an engineering student’s internship experiences. Over four years of internships, observations and interview responses were recorded to address three questions: What is the dominant industrial leadership style? What is the dominant leadership style in the broader engineering sector? What is the dominant leadership style entry-level engineers should know to be successful? Reflections on personal experiences within the engineering industry suggest an ideal leadership style that an entry-level engineer or a similar technical individual can utilize. Previous research on leadership and success formed a basis for claims as to which leadership techniques can lead to success for an entry-level engineer. Further, this study builds upon prior research on the correlations between leadership skills taught in college and the resulting success beyond the classroom. Leadership styles are ranked in order of their utilization in industry with a corresponding value for entry-level engineers. They are: pacesetting, authoritative, democratic, coaching, and delegating. From the study, the authors concluded by suggesting that there is a correlation between knowledge in leadership for both subjective and objective success of entry-level engineers. Ideally, every engineer should be taught a multitude of techniques, and recommendations are that engineers should strive to learn many leadership styles, whether they intend to hold a position of leadership or not.
more »
« less
- Award ID(s):
- 1644166
- PAR ID:
- 10296458
- Publisher / Repository:
- International Association of Journals and Conferences
- Date Published:
- Journal Name:
- The Technology Interface
- Volume:
- 56
- Issue:
- 20
- ISSN:
- 1523-9926
- Page Range / eLocation ID:
- 47-52
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With college advisory boards and potential employers consistently voicing their desire for engineers and scientists who can communicate well, work effectively in teams, and independently problem-solve, the Colleges of Engineering & Computer Science (ECS) and Natural Sciences and Mathematics (NSM) at Sacramento State University, a large, public, primarily undergraduate institution, have deployed two programs to explicitly address these skills for undergraduate science, technology, engineering, and mathematics (STEM) students. The goals of the NSF-funded Achieving STEM Persistence through Peer-Assisted Learning and Leadership Development (ASPIRE) project are to increase retention and decrease time to graduation for STEM students, as well as increase retention of women and underrepresented minorities (URM) in the STEM workforce by implementing evidence-based practices to promote student success during two critical transitions: 1) from lower-division to upper-division coursework in engineering; and 2) from upper-division coursework to an entry-level STEM career. ASPIRE aims to achieve these goals by: 1) adapting and implementing the NSM Peer Assisted Learning (PAL) program in gateway engineering courses; and 2) developing the Hornet Leadership Program which includes scaffolded opportunities for students to explore their leadership capacity and develop leadership skills. The main research questions for this study include: (1) Will the ECS PAL model and Hornet Leadership Program result in increased persistence and workforce readiness in STEM majors at a large, diverse university? (2) What attitude changes will this project have on students and faculty and the relationships between them? The first question is addressed through pre- and post-implementation student surveys and student course/GPA data. The second question is addressed through faculty surveys, faculty focus groups/interviews, and pre- and post-data from a faculty professional development workshop. In general, preliminary results from this study indicate the new ECS PAL program successfully attracts URM students and thus has the potential to support their persistence and STEM workforce readiness. Additionally, undergraduate students across both Colleges who participated in the inaugural Hornet Leadership Program gained non-technical skills and experiences directly linked to competitiveness and preparation for workforce entry and graduate programs. Finally, faculty surveys and the faculty professional development workshop indicate that faculty value student leadership development, but identify barriers to accomplishing this work.more » « less
-
The development of inclusive leaders is essential for the success of future engineering and our nation. Equipping students with vital leadership-enabling competencies is necessary to develop a workforce that is prepared to act ethically, and responsibly, and tackle unforeseen challenges in the future. Inclusive leaders, or leaders that are self-aware, empathetic, and prioritize diversity, equity, and inclusion in their decision-making, are essential for the forward progress of engineering. A growing body of literature highlights the numerous ways in which students may develop leadership skills outside of the classroom through involvement in out-of-class activities (e.g., internships, clubs, sports, and research experiences). Research Experiences for Undergraduates (REUs) may provide students with a unique opportunity to develop leadership-enabling competencies that will prepare them for leadership in graduate school, the engineering industry, or academia. The goal of this research was to identify how students’ engagement in an engineering education virtual REU site contributed to their development of essential leadership-enabling competencies. The research question guiding this study was ‘What inclusive leadership-enabling competencies and skills did engineering students learn and develop during an engineering education Summer REU program?’ Qualitative data was collected via weekly open-ended surveys from 9 students (7 women, 2 men) participating in an REU over 9 weeks. Participants in this study consisted of students from underrepresented groups in engineering (e.g., Black, Latinx, women, students from low SES backgrounds, or first-generation students), attending large public research universities across the United States. This study implemented mixed methods to understand what leadership competencies were occurring most frequently and how students were learning and developing these competencies. A combination of text mining for frequency (quantitative analysis) and deductive and inductive coding (qualitative analysis) was used to analyze the data. A codebook was developed based on the leadership-coupled professional competencies that engineering industry leaders identified as essential for engineers entering the workforce. Researchers also allowed for other competencies and leadership-enabling skills to emerge from the data. Findings from this work indicate that students were developing a vast amount of inclusive leadership knowledge and skills from participating in the virtual REU site. This paper highlights, through the use of word clouds and text mining software, the many leadership-enabling competencies that participants developed throughout the summer research experience (e.g., learning, communication, adaptability, self-awareness, balance, networking, etc.). Further, students were able to develop digital literacy, increased communication skills, knowledge of career pathways, intrapersonal growth, and interpersonal relations. This work offers a novel contribution to the literature in understanding how students can develop technical engineering and research skills as well as professional and leadership skills in the same space. Findings from this work help to illuminate the benefits of this virtual REU site focused on engineering education research resulting in terms of developing inclusive leadership skills. Implications for future REU programs, students interested in developing leadership skills, engineering graduate programs, academia, and industry employers are outlined.more » « less
-
In order to lead the social process required to solve society’s grandest challenges and ensure that the capabilities of an expanded engineering workforce are successfully harnessed, new engineers must be more than just technical experts, they must also be technical leaders. Thankfully, greater numbers of engineering educators are recognizing this need and are consequently establishing engineering leadership certificates, minors, and even full degree programs through centers at universities throughout the country. However, for these programs to reach their full potential, engineering educators must be successful in integrating leadership into the very identity of engineers. This study seeks to better understand the relationship between engineering identity and leadership, so tools can be developed that enable engineering educators to more effectively integrate leadership into an engineering identity. This paper explores this relationship using a national sample of 918 engineering students who participated in the 2013 College Senior Survey (CSS). The CSS is administered by the Higher Education Research Institute (HERI) at UCLA to college students at the end of their fourth year of college; data from the CSS are then matched to students’ prior responses on the 2009 Freshman Survey (TFS), which was administered when they first started college, to create a longitudinal sample. Using a leadership construct developed by HERI as the outcome variable, this work utilizes Hierarchical Linear Modelling (HLM) to examine the impact of engineering identity and a host of other factors shown to be important in college student development on leadership. HLM is especially appropriate since individual student cases are grouped by schools, and predictor variables include both student-level and institution-level variables. The leadership construct, referred to as leadership self-efficacy in this work, includes self-rated growth in leadership ability, self-rating of leadership ability relative to one’s peers, participation in a leadership role and/or leadership training, and perceived effectiveness leading an organization. The primary independent variable of interest was a factor measuring engineering identity comprised of items available on both the TFS and CSS instruments. Including this measure of engineering identity from two different time periods in the model provides the relationship between engineering identity in the fourth year and leadership self-efficacy, controlling for engineering identity in the first year as a pretest. Statistically significant results were found across each of the areas tested, including the fourth-year engineering identity factor as well as several collegiate experiences, pre-college experiences, major, and institutional variables. Taken together, these results present a nuanced picture of what matters to predicting leadership outcomes for undergraduate engineering students. For example, while engineering identity is a significant positive predictor of the leadership construct, computer engineers score lower than mechanical engineers on leadership, while interacting with faculty appears to enhance leadership self-efficacy.more » « less
-
Christopher, M; Sharma, P (Ed.)Soft skills are important to leadership and leadership styles; however, there are limited studies on how soft skills affect the perceived leadership styles of college students. Therefore, the study assessed the effects of soft skills on the perceived leadership styles of college students. The data were collected from a purposive sample of college students in a leadership training program. Data was analyzed using descriptive statistics and multiple regression analysis. The results show that the most dominant leadership styles were, telling, selling, and delegating. Regarding the selected soft skills vis-à-vis what participants would do in scenarios, there were four high combined “most likely” and “likely” responses, 70% or above for communication: particularly, for active listening, conflict resolution, writing a letter, and public speaking. For problem-solving, all five combined “most likely” and “likely” responses, were high, above 70% for creative skills, research and consult, consensus solutions, decision-making skills, and critical thinking skills. Furthermore, for work ethic, there were four high combined “most likely” and “likely” responses, above 60% for correcting an oversight, doting “is” and crossing “ts”, doing a task methodically, and completing a task on time. Additionally, the results of the multiple regression showed that the problem-solving soft skills, overall, dominated the composite leadership style. Therefore, problem-solving may be a critical soft skill that affects leadership styles.more » « less
An official website of the United States government

