skip to main content

Title: Academic Success and Retention of Underprepared Students
The Academy of Engineering Success (AcES) program, established in 2012 and supported by NSF S-STEM award number 1644119 throughout 2016-2021, employs literature-based, best practices to support and retain underprepared and underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. A total of 71 students, including 21 students supported by S-STEM scholarships, participated in the AcES program between 2016-2019 at a large R1 institution in the mid-Atlantic region. All AcES students participate in a common program during their first year, comprised of: a one-week summer bridge experience, a common fall professional development course and spring “Engineering in History” course, and a common academic advisor. These students also have opportunities for: (1) faculty-student, student-student, and industry mentor-student interaction, (2) academic support and student success education, and (3) major and career exploration – all designed to help students develop feelings of institutional inclusion, engineering self-efficacy and identity, and academic and professional success skills. They also participate in the GRIT, Longitudinal Assessment of Engineering Self-Efficacy (LAESE), and the Motivated Strategies for Learning Questionnaire (MSLQ) surveys plus individual and focus group interviews at the start, midpoint, and end of each fall semester and at the end of the spring more » semester. The surveys provide a measure of students’ GRIT, their beliefs related to the intrinsic value of engineering and learning, their feelings of inclusion and test anxiety, and their self-efficacy related to engineering, math, and coping skills. The interviews provide information related to the student experience, feelings of inclusion, and program impact. Institutional data, combined with the survey and interview responses, are used to examine four research questions designed to examine the relationship of the elements of the AcES program to participants’ academic success and retention in engineering. Early analyses of the student retention data and survey responses from the 2017 and 2018 cohorts indicated students who ultimately left engineering before the start of their second year initially scored higher in areas of engineering self-efficacy and test anxiety, than those who stayed in engineering, while those who retained to the second year began their engineering education with lower self-efficacy scores, but higher scores related to the belief in the intrinsic value of engineering, learning strategy use, and coping self-efficacy. These results suggest that students who start with unrealistically high expectations of their performance leave engineering at higher rates than students who start with lower personal performance expectations, but have stronger value of the field and strategies for meeting challenges. These data appear to support the Kruger-Dunning effect in which students with limited knowledge of a specific field overestimate their abilities to perform in that area or underestimate the level of effort success may require. This paper will add an analysis of the academic success and retention data from 2019 cohort to this research, discuss the impact of COVID-19 to this program and research, as well as illuminate the quantitative results with the qualitative data from individual and focus group interviews regarding the aspects of the AcES program that impact student success, their expectations and methods for overcoming academic challenges, and their feelings of motivation and inclusion. « less
Authors:
; ;
Award ID(s):
1644119
Publication Date:
NSF-PAR ID:
10296670
Journal Name:
2021 ASEE Virtual Annual Conference Content Access, Virtual Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. POSTER. Presented at the Symposium (9/12/2019) Abstract: The Academy of Engineering Success (AcES) employs literature-based, best practices to support and retain underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. AcES was established in 2012 and has been supported via NSF S-STEM award number 1644119 since 2016. The 2016, 2017, and 2018 cohorts consist of 12, 20, and 22 students, respectively. Five S-STEM supported scholarships were awarded to the 2016 cohort, seven scholarships were awarded to students from the 2017 cohort, and six scholarships were awarded to students from the 2018 cohort. AcES students participate in a one-week summer bridge experience, a common fall semester course focused on professional development, and a common spring semester course emphasizing the role of engineers in societal development. Starting with the summer bridge experience, and continuing until graduation, students are immersed in curricular and co-curricular activities with the goals of fostering feelings of institutional inclusion and belonging in engineering, providing academic support and student success skills, and professional development. The aforementioned goals are achieved by providing (1) opportunities for faculty-student, student-student, and industry mentor-student interaction, (2) academic support, and student success education in areas such as time managementmore »and study skills, and (3) facilitated career and major exploration. Four research questions are being examined, (1) What is the relationship between participation in the AcES program and participants’ academic success?, (2) What aspects of the AcES program most significantly impact participants’ success in engineering, (3) How do AcES students seek to overcome challenges in studying engineering, and (4) What is the longitudinal impact of the AcES program in terms of motivation, perceptions, feelings of inclusion, outcome expectations of the participants and retention? Students enrolled in the AcES program participate in the GRIT, LAESE, and MSLQ surveys, focus groups, and one-on-one interviews at the start and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. Focus group and interview responses are analyzed in order to answer research questions 2, 3, and 4. Survey responses are analyzed to answer research question 4, and institutional data such as GPA is used to answer research question 1. An analysis of the 2017 AcES cohort survey responses produced a surprising result. When the responses of AcES students who retained were compared to the responses of AcES students who left engineering, those who left engineering had higher baseline values of GRIT, career expectations, engineering self-efficacy, and math outcome efficacy than those students who retained. A preliminary analysis of the 2016, 2017, and 2018 focus group and one-on-one interview responses indicates that the Engineering Learning Center, tutors, organized out of class experiences, first-year seminar, the AcES cohort, the AcES summer bridge, the AcES program, AcES Faculty/Staff, AcES guest lecturers, and FEP faculty/Staff are viewed as valuable by students and cited with contributing to their success in engineering. It is also evident that AcES students seek help from peers, seek help from tutors, use online resources, and attend office hours to overcome their challenges in studying engineering.« less
  2. The Academy of Engineering Success (AcES) program employs known best practices to support engineering students with the goal of retaining them through graduation and diversifying the engineering workforce. The AcES program started in 2012 and has been supported by NSF SSTEM award number DUE-1644119 since 2016. Cohorts from 2016, 2017, 2018, and 2019 consist of 12, 20, 22, and 17 students, respectively. Twenty-one renewable S-STEM supported scholarships have been awarded to students since 2016. AcES students participate in a one-week pre-fall bridge experience, a common fall professional development course, and a course emphasizing the role of engineers in societal development in the spring semester. Starting in the bridge experience and continuing until graduation, students participate in curricular and co-curricular activities with the goals of: (1) fostering feelings of belonging in engineering and institutional inclusion, (2) encouraging professional development, and (3) supporting academic achievement and student success. These goals are achieved by providing: (1) opportunities for interaction between students and peers, faculty, and industry mentors; (2) major and career exploration opportunities; and (3) academic support and student success education in areas such as time management and study skills. AcES students participate in the GRIT, LAESE, and MSLQ surveys, as well asmore »in focus groups and one-on-one interviews at the start and end of each fall semester and at the end of the spring semester. The surveys provide a quantitative measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. Qualitative data from the focus group and individual interview responses are used to provide insight into the quantitative survey results. Surprisingly, a previous analysis of the 2017 cohort survey responses revealed that students who left engineering had higher baseline values of GRIT, career expectations, engineering self-efficacy, and math outcome efficacy than those students who retained. Hence, the 2018 cohort survey responses were analyzed in relation to retention and are presented along with qualitative results to provide a holistic understanding of student retention. Results from both the 2017 and 2018 cohorts are presented and discussed in the paper and poster.« less
  3. The Academy of Engineering Success (AcES), supported by an NSF S-STEM grant since 2016, employs literature-based, best practices to support and retain students in engineering. AcES students participate in a one-week summer bridge experience; a common fall semester course focused on professional development, time management and study skills, and career exploration; and a common spring semester course emphasizing the role of engineers in societal development. Students are also immersed in co-curricular activities with the goals of fostering feelings of institutional inclusion and belonging in engineering, providing academic support and student success skills, and professional development. AcES students participate in the GRIT, LAESE, and MSLQ surveys at the start and end of each fall semester and at the end of the spring semester each year. Focus group data is collected at the beginning, middle and end of each semester and one-on-one interviews occur at the start and end of each semester. The surveys provide a measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. A previous study, based on an analysis of the 2017 AcES cohort survey responses, produced a surprising result. When the responses of AcESmore »students who retained were compared to the responses of AcES students who left engineering, those who left engineering had higher baseline values of GRIT, career expectations, engineering self-efficacy, and math outcome efficacy than those students who retained. These results appear to support the Kruger-Dunning effect. This paper presents the subsequent analysis of two years of participant data, the 2017 and 2018 cohorts, to further explore the possibility or the strength of this effect for these students and investigates possible reasons for the results.« less
  4. This complete research paper examines the connection between student beliefs about engineering as a profession, as well as the perceptions of their family and friends, to their reported self-efficacy, career expectations, and grittiness. The student responses examined were obtained from non-calculus ready engineering students at a large land grant institution in the Mid-Atlantic region. The students participated in a well-established program focused on cohort formation, mentorship, professional skill development, and fostering a sense of inclusion and belonging in engineering. The program, consisting of a one-week pre-fall bridge experience and two common courses, was founded in 2012 and has been operating with National Science Foundation (NSF) S-STEM funding since 2016. Students who received S-STEM funded scholarships are required to participate in focus groups, one-on-one interviews, and complete LAESE, MSLQ, and GRIT questionnaires each semester. The researchers applied qualitative coding methods to evaluate student responses from focus groups and one-one-one interviews which were conducted from 2017 to 2019. Questions examined in this paper include: 1) How would you describe an engineer? 2) Please describe what you think an engineer does on a daily basis. 3) What do you think your friends/family think of engineering? 4) What skills or characteristics do you thinkmore »good engineers have? 5) What types of careers do you believe are filled by degree holding engineers? Student responses on the aforementioned questions were related to the self-efficacy, career expectation, and grit values obtained from the LAESE, MSLQ, and GRIT instruments. The nature of this longitudinal study allows the evolution of student responses to also be examined as they matriculate through their education. Additional analysis was performed to identify themes and numerical trends associated with student populations such as, underrepresented minorities, females, and first-generation college students. Results of this research are presented in an effort to further highlight the importance of exposure to STEM fields during an individual’s K-12 education, and express how student perceptions, self-efficacy, GRIT, and career expectations evolve over their undergraduate education.« less
  5. This complete research paper discusses how students’ feelings of inclusion change throughout their undergraduate career. Student responses acquired through focus groups and one-on-one interviews were examined to determine how included the students felt in their engineering college and also the broader scientific community. A small group of non-calculus ready engineering students enrolled in a large land grant institution in the Mid-Atlantic region consented to participate in the study. The student cohort participated in an NSF S-STEM funded program aimed at fostering a sense of inclusion in engineering by implementing a curriculum focused on cohort formation, career exploration, and professional development. The AcES, consisting of a weeklong pre-fall bridge experience, two common courses, and a variety of co-curricular activities, has been operating for eight years. Students who receive S-STEM funded scholarships participate in three focus groups and two one-on-one interviews each semester throughout their undergraduate studies. Student responses from the one-on-one interviews and focus groups conducted from 2017-2020 were examined with qualitative coding methods. Questions examined in this work include: 1) Did the engineering in history course help make you feel like you belong in engineering at WVU and that you are included in engineering at WVU?, 2) Do you feelmore »part of the group when working on projects in your engineering courses?, 3) Do you consider yourself a member of the scientific and engineering community here at WVU? Why or why not, and 4) Do you consider yourself a member of the broader scientific and engineering community? During the exploratory coding phase three codes were established to represent the degree of inclusion felt by students: Edge of Inclusion, Slight Inclusion, and Feelings of Inclusion. Edge of Inclusion was characterized by student responses such as “almost there but not totally”, “just starting to be”, and “no, well maybe a bit” while student responses such as “yes, but only a little” and “in some classes or situations” were recognized as Slight Inclusion. Examples of student responses such as “yes, I do feel part of it”, “absolutely, since I’ve…”, and “I would consider myself part of . . .” were classified with the code Feelings of Inclusion. Since the sample size was limited by scholarship funding, statistically significant results weren’t obtainable, but clear themes emerged that can be used to influence engineering curricula and serve as justification for an expanded study. Participating in an internship emerged as a major contributor to students feeling included in the broader scientific community. Interestingly, a decrease in the average degree of inclusion occurred after the students’ first semester, prior to increasing in later semesters. It is hypothesized that the emphasis on cohort formation, career exploration, and planned co-curricular activities during the first semester in the AcES program bolstered the initial feelings of inclusion. A student’s feeling of inclusion is known to be a contributing factor in retention. The findings of this research indicate that internships should not only be strongly encouraged, but university resources should be invested in helping students be prepared for, apply to, and obtain internships. The researchers suggest the study be expanded beyond the AcES program to examine a broader sample and greater number of students.« less