skip to main content


Title: Empirical Fourier decomposition: An accurate signal decomposition method for nonlinear and non-stationary time series analysis
Award ID(s):
1762917
NSF-PAR ID:
10296682
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Mechanical Systems and Signal Processing
Volume:
163
Issue:
C
ISSN:
0888-3270
Page Range / eLocation ID:
108155
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The CP tensor decomposition is used in applications such as machine learning and signal processing to discover latent low-rank structure in multidimensional data. Computing a CP decomposition via an alternating least squares (ALS) method reduces the problem to several linear least squares problems. The standard way to solve these linear least squares subproblems is to use the normal equations, which inherit special tensor structure that can be exploited for computational efficiency. However, the normal equations are sensitive to numerical ill-conditioning, which can compromise the results of the decomposition. In this paper, we develop versions of the CP-ALS algorithm using the QR decomposition and the singular value decomposition, which are more numerically stable than the normal equations, to solve the linear least squares problems. Our algorithms utilize the tensor structure of the CP-ALS subproblems efficiently, have the same complexity as the standard CP-ALS algorithm when the input is dense and the rank is small, and are shown via examples to produce more stable results when ill-conditioning is present. Our MATLAB implementation achieves the same running time as the standard algorithm for small ranks, and we show that the new methods can obtain lower approximation error. 
    more » « less
  2. Abstract We briefly compare the structure of two classes of popular models used to describe poro-mechanics and chemo-mechanics, wherein a fluid phase is transported within a solid phase. The multiplicative deformation decomposition has been successfully used to model permanent inelastic shape change in plasticity, solid–solid phase transformation, and thermal expansion, which has motivated its application to poro-mechanics and chemo-mechanics. However, the energetic decomposition provides a more transparent structure and advantages, such as to couple to phase-field fracture, for models of poro-mechanics and chemo-mechanics. 
    more » « less