Solid-state-batteries (SSBs) present a promising technology for next-generation batteries due to their superior properties including increased energy density, wider electrochemical window and safer electrolyte design. Commercialization of SSBs, however, will depend on the resolution of a number of critical chemical and mechanical stability issues. The resolution of these issues will in turn depend heavily on our ability to accurately model these systems such that appropriate material selection, microstructure design, and operational parameters may be determined. In this article we review the current state-of-the art modeling tools with a focus on chemo-mechanics. Some of the key chemo-mechanical problems in SSBs involve dendrite growth through the solid-state electrolyte (SSE), interphase formation at the anode/SSE interface, and damage/decohesion of the various phases in the solid-state composite cathode. These mechanical processes in turn lead to capacity fade, impedance increase, and short-circuit of the battery, ultimately compromising safety and reliability. The article is divided into the three natural components of an all-solid-state architecture. First, modeling efforts pertaining to Li-metal anodes and dendrite initiation and growth mechanisms are reviewed, making the transition from traditional liquid electrolyte anodes to next generation all-solid-state anodes. Second, chemo-mechanics modeling of the SSE is reviewed with a particular focus on the formation of a thermodynamically unstable interphase layer at the anode/SSE interface. Finally, we conclude with a review of chemo-mechanics modeling efforts for solid-state composite cathodes. For each of these critical areas in a SSB we conclude by highlighting the key open areas for future research as it pertains to modeling the chemo-mechanical behavior of these systems.
more »
« less
Deformation Decomposition Versus Energy Decomposition for Chemo- and Poro-Mechanics
Abstract We briefly compare the structure of two classes of popular models used to describe poro-mechanics and chemo-mechanics, wherein a fluid phase is transported within a solid phase. The multiplicative deformation decomposition has been successfully used to model permanent inelastic shape change in plasticity, solid–solid phase transformation, and thermal expansion, which has motivated its application to poro-mechanics and chemo-mechanics. However, the energetic decomposition provides a more transparent structure and advantages, such as to couple to phase-field fracture, for models of poro-mechanics and chemo-mechanics.
more »
« less
- PAR ID:
- 10446655
- Date Published:
- Journal Name:
- Journal of Applied Mechanics
- Volume:
- 91
- Issue:
- 1
- ISSN:
- 0021-8936
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract As solid‐state batteries (SSBs) with lithium (Li) metal anodes gain increasing traction as promising next‐generation energy storage systems, a fundamental understanding of coupled electro‐chemo‐mechanical interactions is essential to design stable solid‐solid interfaces. Notably, uneven electrodeposition at the Li metal/solid electrolyte (SE) interface arising from intrinsic electrochemical and mechanical heterogeneities remains a significant challenge. In this work, the thermodynamic origins of mechanics‐coupled reaction kinetics at the Li/SE interface are investigated and its implications on electrodeposition stability are unveiled. It is established that the mechanics‐driven energetic contribution to the free energy landscape of the Li deposition/dissolution redox reaction has a critical influence on the interface stability. The study presents the competing effects of mechanical and electrical overpotential on the reaction distribution, and demarcates the regimes under which stress interactions can be tailored to enable stable electrodeposition. It is revealed that different degrees of mechanics contribution to the forward (dissolution) and backward (deposition) reaction rates result in widely varying stability regimes, and the mechanics‐coupled kinetics scenario exhibited by the Li/SE interface is shown to depend strongly on the thermodynamic and mechanical properties of the SE. This work highlights the importance of discerning the underpinning nature of electro‐chemo‐mechanical coupling toward achieving stable solid/solid interfaces in SSBs.more » « less
-
Lithium metal and lithium-rich alloys are high-capacity anode materials that could boost the energy content of rechargeable batteries. However, their development has been hindered by rapid capacity decay during cycling, which is driven by the substantial structural, morphological, and volumetric transformations that these materials and their interfaces experience during charge and discharge. During these transformations, the interplay between chemical/structural changes and solid mechanics plays a defining role in determining electrochemical degradation. This Perspective discusses how chemistry and mechanics are interrelated in influencing the reaction mechanisms, stability, and performance of both lithium metal anodes and alloy anodes. Battery systems with liquid electrolytes and solid-state electrolytes are considered because of the distinct effects of chemo-mechanics in each system. Building on this knowledge, we present a discussion of emerging ideas to control and mitigate chemo-mechanical degradation in these materials to enable translation to commercial systems, which could lead to the development of high-energy batteries that are urgently needed to power our increasingly electrified world.more » « less
-
Abstract We present a new computational fluid dynamics approach for simulating two‐phase flow in hybrid systems containing solid‐free regions and deformable porous matrices. Our approach is based on the derivation of a unique set of volume‐averaged partial differential equations that asymptotically approach the Navier‐Stokes Volume‐of‐Fluid equations in solid‐free regions and multiphase Biot Theory in porous regions. The resulting equations extend our recently developed Darcy‐Brinkman‐Biot framework to multiphase flow. Through careful consideration of interfacial dynamics (relative permeability and capillary effects) and extensive benchmarking, we show that the resulting model accurately captures the strong two‐way coupling that is often exhibited between multiple fluids and deformable porous media. Thus, it can be used to represent flow‐induced material deformation (swelling, compression) and failure (cracking, fracturing). The model's open‐source numerical implementation,hybridBiotInterFoam, effectively marks the extension of computational fluid mechanics into modeling multiscale multiphase flow in deformable porous systems. The versatility of the solver is illustrated through applications related to material failure in poroelastic coastal barriers and surface deformation due to fluid injection in poro‐visco‐plastic systems.more » « less
-
Abstract The development of next-generation batteries, utilizing electrodes with high capacities and power densities requires a comprehensive understanding and precise control of material interfaces and architectures. Electro-chemo-mechanics plays an integral role in the morphological evolution and stability of such complex interfaces. Volume changes in electrode materials and the chemical interactions of electrode/electrolyte interfaces result in nonuniform stress fields and structurally different interphases, fundamentally affecting the underlying transport and reaction kinetics. The origin of this mechanistic coupling and its implications on degradation is uniquely dependent on the interface characteristics. In this review, the distinct nature of chemo–mechanical coupling and failure mechanisms at solid–liquid interfaces and solid–solid interfaces is analyzed. For lithium metal electrodes, the critical role of surface/microstructural heterogeneities on the solid electrolyte interphase (SEI) stability and dendrite growth in liquid electrolytes, and on the onset of contact loss and filament penetration with solid electrolytes is summarized. With respect to composite electrodes, key differences in the microstructure-coupled electro-chemo-mechanical attributes of intercalation- and conversion-based chemistries are delineated. Moving from liquid to solid electrolytes in such cathodes, we highlight the significant impact of solid–solid point contacts on transport/mechanical response, electrochemical performance, and failure modes such as particle cracking and delamination. Finally, we present our perspective on future research directions and opportunities to address the underlying electro-chemo-mechanical challenges for enabling next-generation lithium metal batteries.more » « less
An official website of the United States government

