skip to main content


Title: Reducing the Training Overhead of the HPC Compression Autoencoder via Dataset Proportioning
As the storage overhead of high-performance computing (HPC) data reaches into the petabyte or even exabyte scale, it could be useful to find new methods of compressing such data. The compression autoencoder (CAE) has recently been proposed to compress HPC data with a very high compression ratio; however, this machine learning-based method suffers from the major drawback of lengthy training times. In this paper, we attempt to mitigate this problem by proposing a proportioning scheme that reduces the amount of data that is used for training relative to the amount of data to be compressed. We show that this method drastically reduces the training time without, in most cases, significantly increasing the error. We further explain how this scheme can even improve the accuracy of the CAE on certain datasets. Finally, we provide some guidance on how to determine a suitable proportion of the training dataset to use in order to train the CAE for a given dataset.  more » « less
Award ID(s):
1828363 1813081
NSF-PAR ID:
10296692
Author(s) / Creator(s):
Date Published:
Journal Name:
Proc. Of the 15th IEEE International Conference on Networking, Architecture, and Storage (NAS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Error-bounded lossy compression is a state-of-the-art data reduction technique for HPC applications because it not only significantly reduces storage overhead but also can retain high fidelity for postanalysis. Because supercomputers and HPC applications are becoming heterogeneous using accelerator-based architectures, in particular GPUs, several development teams have recently released GPU versions of their lossy compressors. However, existing state-of-the-art GPU-based lossy compressors suffer from either low compression and decompression throughput or low compression quality. In this paper, we present an optimized GPU version, cuSZ, for one of the best error-bounded lossy compressors-SZ. To the best of our knowledge, cuSZ is the first error-bounded lossy compressor on GPUs for scientific data. Our contributions are fourfold. (1) We propose a dual-quantization scheme to entirely remove the data dependency in the prediction step of SZ such that this step can be performed very efficiently on GPUs. (2) We develop an efficient customized Huffman coding for the SZ compressor on GPUs. (3) We implement cuSZ using CUDA and optimize its performance by improving the utilization of GPU memory bandwidth. (4) We evaluate our cuSZ on five real-world HPC application datasets from the Scientific Data Reduction Benchmarks and compare it with other state-of-the-art methods on both CPUs and GPUs. Experiments show that our cuSZ improves SZ's compression throughput by up to 370.1x and 13.1x, respectively, over the production version running on single and multiple CPU cores, respectively, while getting the same quality of reconstructed data. It also improves the compression ratio by up to 3.48x on the tested data compared with another state-of-the-art GPU supported lossy compressor. 
    more » « less
  2. null (Ed.)
    Error-bounded lossy compression is a state-of-the-art data reduction technique for HPC applications because it not only significantly reduces storage overhead but also can retain high fidelity for postanalysis. Because supercomputers and HPC applications are becoming heterogeneous using accelerator-based architectures, in particular GPUs, several development teams have recently released GPU versions of their lossy compressors. However, existing state-of-the-art GPU-based lossy compressors suffer from either low compression and decompression throughput or low compression quality. In this paper, we present an optimized GPU version, cuSZ, for one of the best error-bounded lossy compressors-SZ. To the best of our knowledge, cuSZ is the first error-bounded lossy compressor on GPUs for scientific data. Our contributions are fourfold. (1) We propose a dual-quantization scheme to entirely remove the data dependency in the prediction step of SZ such that this step can be performed very efficiently on GPUs. (2) We develop an efficient customized Huffman coding for the SZ compressor on GPUs. (3) We implement cuSZ using CUDA and optimize its performance by improving the utilization of GPU memory bandwidth. (4) We evaluate our cuSZ on five real-world HPC application datasets from the Scientific Data Reduction Benchmarks and compare it with other state-of-the-art methods on both CPUs and GPUs. Experiments show that our cuSZ improves SZ's compression throughput by up to 370.1x and 13.1x, respectively, over the production version running on single and multiple CPU cores, respectively, while getting the same quality of 
    more » « less
  3. Network pruning is a widely used technique to reduce computation cost and model size for deep neural networks. However, the typical three-stage pipeline (i.e., training, pruning, and retraining (fine-tuning)) significantly increases the overall training time. In this article, we develop a systematic weight-pruning optimization approach based on surrogate Lagrangian relaxation (SLR), which is tailored to overcome difficulties caused by the discrete nature of the weight-pruning problem. We further prove that our method ensures fast convergence of the model compression problem, and the convergence of the SLR is accelerated by using quadratic penalties. Model parameters obtained by SLR during the training phase are much closer to their optimal values as compared to those obtained by other state-of-the-art methods. We evaluate our method on image classification tasks using CIFAR-10 and ImageNet with state-of-the-art multi-layer perceptron based networks such as MLP-Mixer; attention-based networks such as Swin Transformer; and convolutional neural network based models such as VGG-16, ResNet-18, ResNet-50, ResNet-110, and MobileNetV2. We also evaluate object detection and segmentation tasks on COCO, the KITTI benchmark, and the TuSimple lane detection dataset using a variety of models. Experimental results demonstrate that our SLR-based weight-pruning optimization approach achieves a higher compression rate than state-of-the-art methods under the same accuracy requirement and also can achieve higher accuracy under the same compression rate requirement. Under classification tasks, our SLR approach converges to the desired accuracy × faster on both of the datasets. Under object detection and segmentation tasks, SLR also converges 2× faster to the desired accuracy. Further, our SLR achieves high model accuracy even at the hardpruning stage without retraining, which reduces the traditional three-stage pruning into a two-stage process. Given a limited budget of retraining epochs, our approach quickly recovers the model’s accuracy.

     
    more » « less
  4. High-performance computing (HPC) systems that run scientific simulations of significance produce a large amount of data during runtime. Transferring or storing such big datasets causes a severe I/O bottleneck and a considerable storage burden. Applying compression techniques, particularly lossy compressors, can reduce the size of the data and mitigate such overheads. Unlike lossless compression algorithms, error-controlled lossy compressors could significantly reduce the data size while respecting the user-defined error bound. DCTZ is one of the transform-based lossy compressors with a highly efficient encoding and purpose-built error control mechanism that accomplishes high compression ratios with high data fidelity. However, since DCTZ quantizes the DCT coefficients in the frequency domain, it may only partially control the relative error bound defined by the user. In this paper, we aim to improve the compression quality of DCTZ. Specifically, we propose a preconditioning method based on level offsetting and scaling to control the magnitude of input of the DCTZ framework, thereby enforcing stricter error bounds. We evaluate the performance of our method in terms of compression ratio and rate distortion with real-world HPC datasets. Our experimental result shows that our method can achieve a higher compression ratio than other state-of-the-art lossy compressors with a tighter error bound while precisely guaranteeing the user-defined error bound. 
    more » « less
  5. As the amount of data produced by HPC applications reaches the exabyte range, compression techniques are often adopted to reduce the checkpoint time and volume. Since lossless techniques are limited in their ability to achieve appreciable data reduction, lossy compression becomes a preferable option. In this work, a lossy compression technique with highly efficient encoding, purpose-built error control, and high compression ratios is proposed. Specifically, we apply a discrete cosine transform with a novel block decomposition strategy directly to double-precision floating point datasets instead of prevailing prediction-based techniques. Further, we design an adaptive quantization with two specific task-oriented quantizers: guaranteed error bounds and higher compression ratios. Using real-world HPC datasets, our approach achieves 3x-38x compression ratios while guaranteeing specified error bounds, showing comparable performance with state-of-the-art lossy compression methods, SZ and ZFP. Moreover, our method provides viable reconstructed data for various checkpoint/restart scenarios in the FLASH application, thus is considered to be a promising approach for lossy data compression in HPC I/O software stacks. 
    more » « less