Human activity recognition (HAR) from wearable sensor data has recently gained widespread adoption in a number of fields. However, recognizing complex human activities, postural and rhythmic body movements (e.g., dance, sports) is challenging due to the lack of domain-specific labeling information, the perpetual variability in human movement kinematics profiles due to age, sex, dexterity and the level of professional training. In this paper, we propose a deep activity recognition model to work with limited labeled data, both for simple and complex human activities. To mitigate the intra- and inter-user spatio-temporal variability of movements, we posit novel data augmentation and domain normalization techniques. We depict a semi-supervised technique that learns noise and transformation invariant feature representation from sparsely labeled data to accommodate intra-personal and inter-user variations of human movement kinematics. We also postulate a transfer learning approach to learn domain invariant feature representations by minimizing the feature distribution distance between the source and target domains. We showcase the improved performance of our proposed framework, AugToAct, using a public HAR dataset. We also design our own data collection, annotation and experimental setup on complex dance activity recognition steps and kinematics movements where we achieved higher performance metrics with limited label data compared to simple activity recognition tasks.
more »
« less
X-CHAR: A Concept-based Explainable Complex Human Activity Recognition Model
End-to-end deep learning models are increasingly applied to safety-critical human activity recognition (HAR) applications, e.g., healthcare monitoring and smart home control, to reduce developer burden and increase the performance and robustness of prediction models. However, integrating HAR models in safety-critical applications requires trust, and recent approaches have aimed to balance the performance of deep learning models with explainable decision-making for complex activity recognition. Prior works have exploited the compositionality of complex HAR (i.e., higher-level activities composed of lower-level activities) to form models with symbolic interfaces, such as concept-bottleneck architectures, that facilitate inherently interpretable models. However, feature engineering for symbolic concepts-as well as the relationship between the concepts-requires precise annotation of lower-level activities by domain experts, usually with fixed time windows, all of which induce a heavy and error-prone workload on the domain expert. In this paper, we introduce X-CHAR, an eXplainable Complex Human Activity Recognition model that doesn't require precise annotation of low-level activities, offers explanations in the form of human-understandable, high-level concepts, while maintaining the robust performance of end-to-end deep learning models for time series data. X-CHAR learns to model complex activity recognition in the form of a sequence of concepts. For each classification, X-CHAR outputs a sequence of concepts and a counterfactual example as the explanation. We show that the sequence information of the concepts can be modeled using Connectionist Temporal Classification (CTC) loss without having accurate start and end times of low-level annotations in the training dataset-significantly reducing developer burden. We evaluate our model on several complex activity datasets and demonstrate that our model offers explanations without compromising the prediction accuracy in comparison to baseline models. Finally, we conducted a mechanical Turk study to show that the explanations provided by our model are more understandable than the explanations from existing methods for complex activity recognition.
more »
« less
- PAR ID:
- 10451369
- Date Published:
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2474-9567
- Page Range / eLocation ID:
- 1 to 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neurosymbolic artificial intelligence (AI) is an emerging and quickly advancing field that combines the subsymbolic strengths of (deep) neural networks and the explicit, symbolic knowledge contained in knowledge graphs (KGs) to enhance explainability and safety in AI systems. This approach addresses a key criticism of current generation systems, namely, their inability to generate human-understandable explanations for their outcomes and ensure safe behaviors, especially in scenarios with unknown unknowns (e.g., cybersecurity, privacy). The integration of neural networks, which excel at exploring complex data spaces, and symbolic KGs representing domain knowledge, allows AI systems to reason, learn, and generalize in a manner understandable to experts. This article describes how applications in cybersecurity and privacy, two of the most demanding domains in terms of the need for AI to be explainable while being highly accurate in complex environments, can benefit from neurosymbolic AI.more » « less
-
In mobile health (mHealth) and human activity recognition (HAR), collecting labeled data often comes at a significantly higher cost or level of user burden than collecting unlabeled data. This motivates the idea of attempting to optimize the collection of labeled data to minimize cost or burden. In this paper, we develop active learning methods that are tailored to the mHealth and HAR domains to address the problems of labeled data scarcity and the cost of labeled data collection. Specifically, we leverage between-user similarity to propose a novel hierarchical active learning framework that personalizes models for each user while sharing the labeled data collection burden across a group, thereby reducing the labeling effort required by any individual user. We evaluate our framework on a publicly available human activity recognition dataset. Our hierarchical active learning framework on average achieves between a 20% and 70% reduction in labeling effort when compared to standard active learning methods.more » « less
-
Driven by the development of machine learning and the development of wireless techniques, lots of research efforts have been spent on the human activity recognition (HAR). Although various deep learning algorithms can achieve high accuracy for recognizing human activities, existing works lack of a theoretical performance upper bound which is the best accuracy that is only limited by the influencing factors in wireless networks such as indoor physical environments and settings of wireless sensing devices regardless of any HAR algorithm. Without the understanding of performance upper bound, mistakenly configuring the influencing factors can reduce the HAR accuracy drastically no matter what deep learning algorithms are utilized. In this paper, we propose the HAR performance upper bound which is the minimum classification error probability that doesn't depend on any HAR algorithms and can be considered as a function of influencing factors in wireless sensing networks for CSI based human activity recognition. Since the performance upper bound can capture the impacts of influencing factors on HAR accuracy, we further analyze the influences of those factors with varying situations such as through the wall HAR and different human activities by MATLAB simulations.more » « less
-
null (Ed.)Recent work on explainable clustering allows describing clusters when the features are interpretable. However, much modern machine learning focuses on complex data such as images, text, and graphs where deep learning is used but the raw features of data are not interpretable. This paper explores a novel setting for performing clustering on complex data while simultaneously generating explanations using interpretable tags. We propose deep descriptive clustering that performs sub-symbolic representation learning on complex data while generating explanations based on symbolic data. We form good clusters by maximizing the mutual information between empirical distribution on the inputs and the induced clustering labels for clustering objectives. We generate explanations by solving an integer linear programming that generates concise and orthogonal descriptions for each cluster. Finally, we allow the explanation to inform better clustering by proposing a novel pairwise loss with self-generated constraints to maximize the clustering and explanation module's consistency. Experimental results on public data demonstrate that our model outperforms competitive baselines in clustering performance while offering high-quality cluster-level explanations.more » « less